dataset_service.py 64 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406
  1. import datetime
  2. import json
  3. import logging
  4. import random
  5. import time
  6. import uuid
  7. from typing import Optional, cast
  8. from flask import current_app
  9. from flask_login import current_user
  10. from sqlalchemy import func
  11. from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
  12. from core.model_manager import ModelManager
  13. from core.model_runtime.entities.model_entities import ModelType
  14. from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
  15. from core.rag.datasource.keyword.keyword_factory import Keyword
  16. from core.rag.models.document import Document as RAGDocument
  17. from events.dataset_event import dataset_was_deleted
  18. from events.document_event import document_was_deleted
  19. from extensions.ext_database import db
  20. from extensions.ext_redis import redis_client
  21. from libs import helper
  22. from models.account import Account
  23. from models.dataset import (
  24. AppDatasetJoin,
  25. Dataset,
  26. DatasetCollectionBinding,
  27. DatasetProcessRule,
  28. DatasetQuery,
  29. Document,
  30. DocumentSegment,
  31. )
  32. from models.model import UploadFile
  33. from models.source import DataSourceBinding
  34. from services.errors.account import NoPermissionError
  35. from services.errors.dataset import DatasetNameDuplicateError
  36. from services.errors.document import DocumentIndexingError
  37. from services.errors.file import FileNotExistsError
  38. from services.feature_service import FeatureModel, FeatureService
  39. from services.tag_service import TagService
  40. from services.vector_service import VectorService
  41. from tasks.clean_notion_document_task import clean_notion_document_task
  42. from tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_task
  43. from tasks.delete_segment_from_index_task import delete_segment_from_index_task
  44. from tasks.disable_segment_from_index_task import disable_segment_from_index_task
  45. from tasks.document_indexing_task import document_indexing_task
  46. from tasks.document_indexing_update_task import document_indexing_update_task
  47. from tasks.duplicate_document_indexing_task import duplicate_document_indexing_task
  48. from tasks.recover_document_indexing_task import recover_document_indexing_task
  49. from tasks.retry_document_indexing_task import retry_document_indexing_task
  50. class DatasetService:
  51. @staticmethod
  52. def get_datasets(page, per_page, provider="vendor", tenant_id=None, user=None, search=None, tag_ids=None):
  53. if user:
  54. permission_filter = db.or_(Dataset.created_by == user.id,
  55. Dataset.permission == 'all_team_members')
  56. else:
  57. permission_filter = Dataset.permission == 'all_team_members'
  58. query = Dataset.query.filter(
  59. db.and_(Dataset.provider == provider, Dataset.tenant_id == tenant_id, permission_filter)) \
  60. .order_by(Dataset.created_at.desc())
  61. if search:
  62. query = query.filter(db.and_(Dataset.name.ilike(f'%{search}%')))
  63. if tag_ids:
  64. target_ids = TagService.get_target_ids_by_tag_ids('knowledge', tenant_id, tag_ids)
  65. if target_ids:
  66. query = query.filter(db.and_(Dataset.id.in_(target_ids)))
  67. else:
  68. return [], 0
  69. datasets = query.paginate(
  70. page=page,
  71. per_page=per_page,
  72. max_per_page=100,
  73. error_out=False
  74. )
  75. return datasets.items, datasets.total
  76. @staticmethod
  77. def get_process_rules(dataset_id):
  78. # get the latest process rule
  79. dataset_process_rule = db.session.query(DatasetProcessRule). \
  80. filter(DatasetProcessRule.dataset_id == dataset_id). \
  81. order_by(DatasetProcessRule.created_at.desc()). \
  82. limit(1). \
  83. one_or_none()
  84. if dataset_process_rule:
  85. mode = dataset_process_rule.mode
  86. rules = dataset_process_rule.rules_dict
  87. else:
  88. mode = DocumentService.DEFAULT_RULES['mode']
  89. rules = DocumentService.DEFAULT_RULES['rules']
  90. return {
  91. 'mode': mode,
  92. 'rules': rules
  93. }
  94. @staticmethod
  95. def get_datasets_by_ids(ids, tenant_id):
  96. datasets = Dataset.query.filter(Dataset.id.in_(ids),
  97. Dataset.tenant_id == tenant_id).paginate(
  98. page=1, per_page=len(ids), max_per_page=len(ids), error_out=False)
  99. return datasets.items, datasets.total
  100. @staticmethod
  101. def create_empty_dataset(tenant_id: str, name: str, indexing_technique: Optional[str], account: Account):
  102. # check if dataset name already exists
  103. if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():
  104. raise DatasetNameDuplicateError(
  105. f'Dataset with name {name} already exists.')
  106. embedding_model = None
  107. if indexing_technique == 'high_quality':
  108. model_manager = ModelManager()
  109. embedding_model = model_manager.get_default_model_instance(
  110. tenant_id=tenant_id,
  111. model_type=ModelType.TEXT_EMBEDDING
  112. )
  113. dataset = Dataset(name=name, indexing_technique=indexing_technique)
  114. # dataset = Dataset(name=name, provider=provider, config=config)
  115. dataset.created_by = account.id
  116. dataset.updated_by = account.id
  117. dataset.tenant_id = tenant_id
  118. dataset.embedding_model_provider = embedding_model.provider if embedding_model else None
  119. dataset.embedding_model = embedding_model.model if embedding_model else None
  120. db.session.add(dataset)
  121. db.session.commit()
  122. return dataset
  123. @staticmethod
  124. def get_dataset(dataset_id):
  125. return Dataset.query.filter_by(
  126. id=dataset_id
  127. ).first()
  128. @staticmethod
  129. def check_dataset_model_setting(dataset):
  130. if dataset.indexing_technique == 'high_quality':
  131. try:
  132. model_manager = ModelManager()
  133. model_manager.get_model_instance(
  134. tenant_id=dataset.tenant_id,
  135. provider=dataset.embedding_model_provider,
  136. model_type=ModelType.TEXT_EMBEDDING,
  137. model=dataset.embedding_model
  138. )
  139. except LLMBadRequestError:
  140. raise ValueError(
  141. "No Embedding Model available. Please configure a valid provider "
  142. "in the Settings -> Model Provider.")
  143. except ProviderTokenNotInitError as ex:
  144. raise ValueError(f"The dataset in unavailable, due to: "
  145. f"{ex.description}")
  146. @staticmethod
  147. def update_dataset(dataset_id, data, user):
  148. filtered_data = {k: v for k, v in data.items() if v is not None or k == 'description'}
  149. dataset = DatasetService.get_dataset(dataset_id)
  150. DatasetService.check_dataset_permission(dataset, user)
  151. action = None
  152. if dataset.indexing_technique != data['indexing_technique']:
  153. # if update indexing_technique
  154. if data['indexing_technique'] == 'economy':
  155. action = 'remove'
  156. filtered_data['embedding_model'] = None
  157. filtered_data['embedding_model_provider'] = None
  158. filtered_data['collection_binding_id'] = None
  159. elif data['indexing_technique'] == 'high_quality':
  160. action = 'add'
  161. # get embedding model setting
  162. try:
  163. model_manager = ModelManager()
  164. embedding_model = model_manager.get_model_instance(
  165. tenant_id=current_user.current_tenant_id,
  166. provider=data['embedding_model_provider'],
  167. model_type=ModelType.TEXT_EMBEDDING,
  168. model=data['embedding_model']
  169. )
  170. filtered_data['embedding_model'] = embedding_model.model
  171. filtered_data['embedding_model_provider'] = embedding_model.provider
  172. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  173. embedding_model.provider,
  174. embedding_model.model
  175. )
  176. filtered_data['collection_binding_id'] = dataset_collection_binding.id
  177. except LLMBadRequestError:
  178. raise ValueError(
  179. "No Embedding Model available. Please configure a valid provider "
  180. "in the Settings -> Model Provider.")
  181. except ProviderTokenNotInitError as ex:
  182. raise ValueError(ex.description)
  183. else:
  184. if data['embedding_model_provider'] != dataset.embedding_model_provider or \
  185. data['embedding_model'] != dataset.embedding_model:
  186. action = 'update'
  187. try:
  188. model_manager = ModelManager()
  189. embedding_model = model_manager.get_model_instance(
  190. tenant_id=current_user.current_tenant_id,
  191. provider=data['embedding_model_provider'],
  192. model_type=ModelType.TEXT_EMBEDDING,
  193. model=data['embedding_model']
  194. )
  195. filtered_data['embedding_model'] = embedding_model.model
  196. filtered_data['embedding_model_provider'] = embedding_model.provider
  197. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  198. embedding_model.provider,
  199. embedding_model.model
  200. )
  201. filtered_data['collection_binding_id'] = dataset_collection_binding.id
  202. except LLMBadRequestError:
  203. raise ValueError(
  204. "No Embedding Model available. Please configure a valid provider "
  205. "in the Settings -> Model Provider.")
  206. except ProviderTokenNotInitError as ex:
  207. raise ValueError(ex.description)
  208. filtered_data['updated_by'] = user.id
  209. filtered_data['updated_at'] = datetime.datetime.now()
  210. # update Retrieval model
  211. filtered_data['retrieval_model'] = data['retrieval_model']
  212. dataset.query.filter_by(id=dataset_id).update(filtered_data)
  213. db.session.commit()
  214. if action:
  215. deal_dataset_vector_index_task.delay(dataset_id, action)
  216. return dataset
  217. @staticmethod
  218. def delete_dataset(dataset_id, user):
  219. # todo: cannot delete dataset if it is being processed
  220. dataset = DatasetService.get_dataset(dataset_id)
  221. if dataset is None:
  222. return False
  223. DatasetService.check_dataset_permission(dataset, user)
  224. dataset_was_deleted.send(dataset)
  225. db.session.delete(dataset)
  226. db.session.commit()
  227. return True
  228. @staticmethod
  229. def check_dataset_permission(dataset, user):
  230. if dataset.tenant_id != user.current_tenant_id:
  231. logging.debug(
  232. f'User {user.id} does not have permission to access dataset {dataset.id}')
  233. raise NoPermissionError(
  234. 'You do not have permission to access this dataset.')
  235. if dataset.permission == 'only_me' and dataset.created_by != user.id:
  236. logging.debug(
  237. f'User {user.id} does not have permission to access dataset {dataset.id}')
  238. raise NoPermissionError(
  239. 'You do not have permission to access this dataset.')
  240. @staticmethod
  241. def get_dataset_queries(dataset_id: str, page: int, per_page: int):
  242. dataset_queries = DatasetQuery.query.filter_by(dataset_id=dataset_id) \
  243. .order_by(db.desc(DatasetQuery.created_at)) \
  244. .paginate(
  245. page=page, per_page=per_page, max_per_page=100, error_out=False
  246. )
  247. return dataset_queries.items, dataset_queries.total
  248. @staticmethod
  249. def get_related_apps(dataset_id: str):
  250. return AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id) \
  251. .order_by(db.desc(AppDatasetJoin.created_at)).all()
  252. class DocumentService:
  253. DEFAULT_RULES = {
  254. 'mode': 'custom',
  255. 'rules': {
  256. 'pre_processing_rules': [
  257. {'id': 'remove_extra_spaces', 'enabled': True},
  258. {'id': 'remove_urls_emails', 'enabled': False}
  259. ],
  260. 'segmentation': {
  261. 'delimiter': '\n',
  262. 'max_tokens': 500,
  263. 'chunk_overlap': 50
  264. }
  265. }
  266. }
  267. DOCUMENT_METADATA_SCHEMA = {
  268. "book": {
  269. "title": str,
  270. "language": str,
  271. "author": str,
  272. "publisher": str,
  273. "publication_date": str,
  274. "isbn": str,
  275. "category": str,
  276. },
  277. "web_page": {
  278. "title": str,
  279. "url": str,
  280. "language": str,
  281. "publish_date": str,
  282. "author/publisher": str,
  283. "topic/keywords": str,
  284. "description": str,
  285. },
  286. "paper": {
  287. "title": str,
  288. "language": str,
  289. "author": str,
  290. "publish_date": str,
  291. "journal/conference_name": str,
  292. "volume/issue/page_numbers": str,
  293. "doi": str,
  294. "topic/keywords": str,
  295. "abstract": str,
  296. },
  297. "social_media_post": {
  298. "platform": str,
  299. "author/username": str,
  300. "publish_date": str,
  301. "post_url": str,
  302. "topic/tags": str,
  303. },
  304. "wikipedia_entry": {
  305. "title": str,
  306. "language": str,
  307. "web_page_url": str,
  308. "last_edit_date": str,
  309. "editor/contributor": str,
  310. "summary/introduction": str,
  311. },
  312. "personal_document": {
  313. "title": str,
  314. "author": str,
  315. "creation_date": str,
  316. "last_modified_date": str,
  317. "document_type": str,
  318. "tags/category": str,
  319. },
  320. "business_document": {
  321. "title": str,
  322. "author": str,
  323. "creation_date": str,
  324. "last_modified_date": str,
  325. "document_type": str,
  326. "department/team": str,
  327. },
  328. "im_chat_log": {
  329. "chat_platform": str,
  330. "chat_participants/group_name": str,
  331. "start_date": str,
  332. "end_date": str,
  333. "summary": str,
  334. },
  335. "synced_from_notion": {
  336. "title": str,
  337. "language": str,
  338. "author/creator": str,
  339. "creation_date": str,
  340. "last_modified_date": str,
  341. "notion_page_link": str,
  342. "category/tags": str,
  343. "description": str,
  344. },
  345. "synced_from_github": {
  346. "repository_name": str,
  347. "repository_description": str,
  348. "repository_owner/organization": str,
  349. "code_filename": str,
  350. "code_file_path": str,
  351. "programming_language": str,
  352. "github_link": str,
  353. "open_source_license": str,
  354. "commit_date": str,
  355. "commit_author": str,
  356. },
  357. "others": dict
  358. }
  359. @staticmethod
  360. def get_document(dataset_id: str, document_id: str) -> Optional[Document]:
  361. document = db.session.query(Document).filter(
  362. Document.id == document_id,
  363. Document.dataset_id == dataset_id
  364. ).first()
  365. return document
  366. @staticmethod
  367. def get_document_by_id(document_id: str) -> Optional[Document]:
  368. document = db.session.query(Document).filter(
  369. Document.id == document_id
  370. ).first()
  371. return document
  372. @staticmethod
  373. def get_document_by_dataset_id(dataset_id: str) -> list[Document]:
  374. documents = db.session.query(Document).filter(
  375. Document.dataset_id == dataset_id,
  376. Document.enabled == True
  377. ).all()
  378. return documents
  379. @staticmethod
  380. def get_error_documents_by_dataset_id(dataset_id: str) -> list[Document]:
  381. documents = db.session.query(Document).filter(
  382. Document.dataset_id == dataset_id,
  383. Document.indexing_status.in_(['error', 'paused'])
  384. ).all()
  385. return documents
  386. @staticmethod
  387. def get_batch_documents(dataset_id: str, batch: str) -> list[Document]:
  388. documents = db.session.query(Document).filter(
  389. Document.batch == batch,
  390. Document.dataset_id == dataset_id,
  391. Document.tenant_id == current_user.current_tenant_id
  392. ).all()
  393. return documents
  394. @staticmethod
  395. def get_document_file_detail(file_id: str):
  396. file_detail = db.session.query(UploadFile). \
  397. filter(UploadFile.id == file_id). \
  398. one_or_none()
  399. return file_detail
  400. @staticmethod
  401. def check_archived(document):
  402. if document.archived:
  403. return True
  404. else:
  405. return False
  406. @staticmethod
  407. def delete_document(document):
  408. # trigger document_was_deleted signal
  409. document_was_deleted.send(document.id, dataset_id=document.dataset_id, doc_form=document.doc_form)
  410. db.session.delete(document)
  411. db.session.commit()
  412. @staticmethod
  413. def rename_document(dataset_id: str, document_id: str, name: str) -> Document:
  414. dataset = DatasetService.get_dataset(dataset_id)
  415. if not dataset:
  416. raise ValueError('Dataset not found.')
  417. document = DocumentService.get_document(dataset_id, document_id)
  418. if not document:
  419. raise ValueError('Document not found.')
  420. if document.tenant_id != current_user.current_tenant_id:
  421. raise ValueError('No permission.')
  422. document.name = name
  423. db.session.add(document)
  424. db.session.commit()
  425. return document
  426. @staticmethod
  427. def pause_document(document):
  428. if document.indexing_status not in ["waiting", "parsing", "cleaning", "splitting", "indexing"]:
  429. raise DocumentIndexingError()
  430. # update document to be paused
  431. document.is_paused = True
  432. document.paused_by = current_user.id
  433. document.paused_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  434. db.session.add(document)
  435. db.session.commit()
  436. # set document paused flag
  437. indexing_cache_key = 'document_{}_is_paused'.format(document.id)
  438. redis_client.setnx(indexing_cache_key, "True")
  439. @staticmethod
  440. def recover_document(document):
  441. if not document.is_paused:
  442. raise DocumentIndexingError()
  443. # update document to be recover
  444. document.is_paused = False
  445. document.paused_by = None
  446. document.paused_at = None
  447. db.session.add(document)
  448. db.session.commit()
  449. # delete paused flag
  450. indexing_cache_key = 'document_{}_is_paused'.format(document.id)
  451. redis_client.delete(indexing_cache_key)
  452. # trigger async task
  453. recover_document_indexing_task.delay(document.dataset_id, document.id)
  454. @staticmethod
  455. def retry_document(dataset_id: str, documents: list[Document]):
  456. for document in documents:
  457. # retry document indexing
  458. document.indexing_status = 'waiting'
  459. db.session.add(document)
  460. db.session.commit()
  461. # add retry flag
  462. retry_indexing_cache_key = 'document_{}_is_retried'.format(document.id)
  463. redis_client.setex(retry_indexing_cache_key, 600, 1)
  464. # trigger async task
  465. document_ids = [document.id for document in documents]
  466. retry_document_indexing_task.delay(dataset_id, document_ids)
  467. @staticmethod
  468. def get_documents_position(dataset_id):
  469. document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first()
  470. if document:
  471. return document.position + 1
  472. else:
  473. return 1
  474. @staticmethod
  475. def save_document_with_dataset_id(dataset: Dataset, document_data: dict,
  476. account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
  477. created_from: str = 'web'):
  478. # check document limit
  479. features = FeatureService.get_features(current_user.current_tenant_id)
  480. if features.billing.enabled:
  481. if 'original_document_id' not in document_data or not document_data['original_document_id']:
  482. count = 0
  483. if document_data["data_source"]["type"] == "upload_file":
  484. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  485. count = len(upload_file_list)
  486. elif document_data["data_source"]["type"] == "notion_import":
  487. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  488. for notion_info in notion_info_list:
  489. count = count + len(notion_info['pages'])
  490. batch_upload_limit = int(current_app.config['BATCH_UPLOAD_LIMIT'])
  491. if count > batch_upload_limit:
  492. raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
  493. DocumentService.check_documents_upload_quota(count, features)
  494. # if dataset is empty, update dataset data_source_type
  495. if not dataset.data_source_type:
  496. dataset.data_source_type = document_data["data_source"]["type"]
  497. if not dataset.indexing_technique:
  498. if 'indexing_technique' not in document_data \
  499. or document_data['indexing_technique'] not in Dataset.INDEXING_TECHNIQUE_LIST:
  500. raise ValueError("Indexing technique is required")
  501. dataset.indexing_technique = document_data["indexing_technique"]
  502. if document_data["indexing_technique"] == 'high_quality':
  503. model_manager = ModelManager()
  504. embedding_model = model_manager.get_default_model_instance(
  505. tenant_id=current_user.current_tenant_id,
  506. model_type=ModelType.TEXT_EMBEDDING
  507. )
  508. dataset.embedding_model = embedding_model.model
  509. dataset.embedding_model_provider = embedding_model.provider
  510. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  511. embedding_model.provider,
  512. embedding_model.model
  513. )
  514. dataset.collection_binding_id = dataset_collection_binding.id
  515. if not dataset.retrieval_model:
  516. default_retrieval_model = {
  517. 'search_method': 'semantic_search',
  518. 'reranking_enable': False,
  519. 'reranking_model': {
  520. 'reranking_provider_name': '',
  521. 'reranking_model_name': ''
  522. },
  523. 'top_k': 2,
  524. 'score_threshold_enabled': False
  525. }
  526. dataset.retrieval_model = document_data.get('retrieval_model') if document_data.get(
  527. 'retrieval_model') else default_retrieval_model
  528. documents = []
  529. batch = time.strftime('%Y%m%d%H%M%S') + str(random.randint(100000, 999999))
  530. if document_data.get("original_document_id"):
  531. document = DocumentService.update_document_with_dataset_id(dataset, document_data, account)
  532. documents.append(document)
  533. else:
  534. # save process rule
  535. if not dataset_process_rule:
  536. process_rule = document_data["process_rule"]
  537. if process_rule["mode"] == "custom":
  538. dataset_process_rule = DatasetProcessRule(
  539. dataset_id=dataset.id,
  540. mode=process_rule["mode"],
  541. rules=json.dumps(process_rule["rules"]),
  542. created_by=account.id
  543. )
  544. elif process_rule["mode"] == "automatic":
  545. dataset_process_rule = DatasetProcessRule(
  546. dataset_id=dataset.id,
  547. mode=process_rule["mode"],
  548. rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
  549. created_by=account.id
  550. )
  551. db.session.add(dataset_process_rule)
  552. db.session.commit()
  553. position = DocumentService.get_documents_position(dataset.id)
  554. document_ids = []
  555. duplicate_document_ids = []
  556. if document_data["data_source"]["type"] == "upload_file":
  557. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  558. for file_id in upload_file_list:
  559. file = db.session.query(UploadFile).filter(
  560. UploadFile.tenant_id == dataset.tenant_id,
  561. UploadFile.id == file_id
  562. ).first()
  563. # raise error if file not found
  564. if not file:
  565. raise FileNotExistsError()
  566. file_name = file.name
  567. data_source_info = {
  568. "upload_file_id": file_id,
  569. }
  570. # check duplicate
  571. if document_data.get('duplicate', False):
  572. document = Document.query.filter_by(
  573. dataset_id=dataset.id,
  574. tenant_id=current_user.current_tenant_id,
  575. data_source_type='upload_file',
  576. enabled=True,
  577. name=file_name
  578. ).first()
  579. if document:
  580. document.dataset_process_rule_id = dataset_process_rule.id
  581. document.updated_at = datetime.datetime.utcnow()
  582. document.created_from = created_from
  583. document.doc_form = document_data['doc_form']
  584. document.doc_language = document_data['doc_language']
  585. document.data_source_info = json.dumps(data_source_info)
  586. document.batch = batch
  587. document.indexing_status = 'waiting'
  588. db.session.add(document)
  589. documents.append(document)
  590. duplicate_document_ids.append(document.id)
  591. continue
  592. document = DocumentService.build_document(dataset, dataset_process_rule.id,
  593. document_data["data_source"]["type"],
  594. document_data["doc_form"],
  595. document_data["doc_language"],
  596. data_source_info, created_from, position,
  597. account, file_name, batch)
  598. db.session.add(document)
  599. db.session.flush()
  600. document_ids.append(document.id)
  601. documents.append(document)
  602. position += 1
  603. elif document_data["data_source"]["type"] == "notion_import":
  604. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  605. exist_page_ids = []
  606. exist_document = dict()
  607. documents = Document.query.filter_by(
  608. dataset_id=dataset.id,
  609. tenant_id=current_user.current_tenant_id,
  610. data_source_type='notion_import',
  611. enabled=True
  612. ).all()
  613. if documents:
  614. for document in documents:
  615. data_source_info = json.loads(document.data_source_info)
  616. exist_page_ids.append(data_source_info['notion_page_id'])
  617. exist_document[data_source_info['notion_page_id']] = document.id
  618. for notion_info in notion_info_list:
  619. workspace_id = notion_info['workspace_id']
  620. data_source_binding = DataSourceBinding.query.filter(
  621. db.and_(
  622. DataSourceBinding.tenant_id == current_user.current_tenant_id,
  623. DataSourceBinding.provider == 'notion',
  624. DataSourceBinding.disabled == False,
  625. DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
  626. )
  627. ).first()
  628. if not data_source_binding:
  629. raise ValueError('Data source binding not found.')
  630. for page in notion_info['pages']:
  631. if page['page_id'] not in exist_page_ids:
  632. data_source_info = {
  633. "notion_workspace_id": workspace_id,
  634. "notion_page_id": page['page_id'],
  635. "notion_page_icon": page['page_icon'],
  636. "type": page['type']
  637. }
  638. document = DocumentService.build_document(dataset, dataset_process_rule.id,
  639. document_data["data_source"]["type"],
  640. document_data["doc_form"],
  641. document_data["doc_language"],
  642. data_source_info, created_from, position,
  643. account, page['page_name'], batch)
  644. db.session.add(document)
  645. db.session.flush()
  646. document_ids.append(document.id)
  647. documents.append(document)
  648. position += 1
  649. else:
  650. exist_document.pop(page['page_id'])
  651. # delete not selected documents
  652. if len(exist_document) > 0:
  653. clean_notion_document_task.delay(list(exist_document.values()), dataset.id)
  654. db.session.commit()
  655. # trigger async task
  656. if document_ids:
  657. document_indexing_task.delay(dataset.id, document_ids)
  658. if duplicate_document_ids:
  659. duplicate_document_indexing_task.delay(dataset.id, duplicate_document_ids)
  660. return documents, batch
  661. @staticmethod
  662. def check_documents_upload_quota(count: int, features: FeatureModel):
  663. can_upload_size = features.documents_upload_quota.limit - features.documents_upload_quota.size
  664. if count > can_upload_size:
  665. raise ValueError(
  666. f'You have reached the limit of your subscription. Only {can_upload_size} documents can be uploaded.')
  667. @staticmethod
  668. def build_document(dataset: Dataset, process_rule_id: str, data_source_type: str, document_form: str,
  669. document_language: str, data_source_info: dict, created_from: str, position: int,
  670. account: Account,
  671. name: str, batch: str):
  672. document = Document(
  673. tenant_id=dataset.tenant_id,
  674. dataset_id=dataset.id,
  675. position=position,
  676. data_source_type=data_source_type,
  677. data_source_info=json.dumps(data_source_info),
  678. dataset_process_rule_id=process_rule_id,
  679. batch=batch,
  680. name=name,
  681. created_from=created_from,
  682. created_by=account.id,
  683. doc_form=document_form,
  684. doc_language=document_language
  685. )
  686. return document
  687. @staticmethod
  688. def get_tenant_documents_count():
  689. documents_count = Document.query.filter(Document.completed_at.isnot(None),
  690. Document.enabled == True,
  691. Document.archived == False,
  692. Document.tenant_id == current_user.current_tenant_id).count()
  693. return documents_count
  694. @staticmethod
  695. def update_document_with_dataset_id(dataset: Dataset, document_data: dict,
  696. account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
  697. created_from: str = 'web'):
  698. DatasetService.check_dataset_model_setting(dataset)
  699. document = DocumentService.get_document(dataset.id, document_data["original_document_id"])
  700. if document.display_status != 'available':
  701. raise ValueError("Document is not available")
  702. # update document name
  703. if document_data.get('name'):
  704. document.name = document_data['name']
  705. # save process rule
  706. if document_data.get('process_rule'):
  707. process_rule = document_data["process_rule"]
  708. if process_rule["mode"] == "custom":
  709. dataset_process_rule = DatasetProcessRule(
  710. dataset_id=dataset.id,
  711. mode=process_rule["mode"],
  712. rules=json.dumps(process_rule["rules"]),
  713. created_by=account.id
  714. )
  715. elif process_rule["mode"] == "automatic":
  716. dataset_process_rule = DatasetProcessRule(
  717. dataset_id=dataset.id,
  718. mode=process_rule["mode"],
  719. rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
  720. created_by=account.id
  721. )
  722. db.session.add(dataset_process_rule)
  723. db.session.commit()
  724. document.dataset_process_rule_id = dataset_process_rule.id
  725. # update document data source
  726. if document_data.get('data_source'):
  727. file_name = ''
  728. data_source_info = {}
  729. if document_data["data_source"]["type"] == "upload_file":
  730. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  731. for file_id in upload_file_list:
  732. file = db.session.query(UploadFile).filter(
  733. UploadFile.tenant_id == dataset.tenant_id,
  734. UploadFile.id == file_id
  735. ).first()
  736. # raise error if file not found
  737. if not file:
  738. raise FileNotExistsError()
  739. file_name = file.name
  740. data_source_info = {
  741. "upload_file_id": file_id,
  742. }
  743. elif document_data["data_source"]["type"] == "notion_import":
  744. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  745. for notion_info in notion_info_list:
  746. workspace_id = notion_info['workspace_id']
  747. data_source_binding = DataSourceBinding.query.filter(
  748. db.and_(
  749. DataSourceBinding.tenant_id == current_user.current_tenant_id,
  750. DataSourceBinding.provider == 'notion',
  751. DataSourceBinding.disabled == False,
  752. DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
  753. )
  754. ).first()
  755. if not data_source_binding:
  756. raise ValueError('Data source binding not found.')
  757. for page in notion_info['pages']:
  758. data_source_info = {
  759. "notion_workspace_id": workspace_id,
  760. "notion_page_id": page['page_id'],
  761. "notion_page_icon": page['page_icon'],
  762. "type": page['type']
  763. }
  764. document.data_source_type = document_data["data_source"]["type"]
  765. document.data_source_info = json.dumps(data_source_info)
  766. document.name = file_name
  767. # update document to be waiting
  768. document.indexing_status = 'waiting'
  769. document.completed_at = None
  770. document.processing_started_at = None
  771. document.parsing_completed_at = None
  772. document.cleaning_completed_at = None
  773. document.splitting_completed_at = None
  774. document.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  775. document.created_from = created_from
  776. document.doc_form = document_data['doc_form']
  777. db.session.add(document)
  778. db.session.commit()
  779. # update document segment
  780. update_params = {
  781. DocumentSegment.status: 're_segment'
  782. }
  783. DocumentSegment.query.filter_by(document_id=document.id).update(update_params)
  784. db.session.commit()
  785. # trigger async task
  786. document_indexing_update_task.delay(document.dataset_id, document.id)
  787. return document
  788. @staticmethod
  789. def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account):
  790. features = FeatureService.get_features(current_user.current_tenant_id)
  791. if features.billing.enabled:
  792. count = 0
  793. if document_data["data_source"]["type"] == "upload_file":
  794. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  795. count = len(upload_file_list)
  796. elif document_data["data_source"]["type"] == "notion_import":
  797. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  798. for notion_info in notion_info_list:
  799. count = count + len(notion_info['pages'])
  800. batch_upload_limit = int(current_app.config['BATCH_UPLOAD_LIMIT'])
  801. if count > batch_upload_limit:
  802. raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
  803. DocumentService.check_documents_upload_quota(count, features)
  804. embedding_model = None
  805. dataset_collection_binding_id = None
  806. retrieval_model = None
  807. if document_data['indexing_technique'] == 'high_quality':
  808. model_manager = ModelManager()
  809. embedding_model = model_manager.get_default_model_instance(
  810. tenant_id=current_user.current_tenant_id,
  811. model_type=ModelType.TEXT_EMBEDDING
  812. )
  813. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  814. embedding_model.provider,
  815. embedding_model.model
  816. )
  817. dataset_collection_binding_id = dataset_collection_binding.id
  818. if document_data.get('retrieval_model'):
  819. retrieval_model = document_data['retrieval_model']
  820. else:
  821. default_retrieval_model = {
  822. 'search_method': 'semantic_search',
  823. 'reranking_enable': False,
  824. 'reranking_model': {
  825. 'reranking_provider_name': '',
  826. 'reranking_model_name': ''
  827. },
  828. 'top_k': 2,
  829. 'score_threshold_enabled': False
  830. }
  831. retrieval_model = default_retrieval_model
  832. # save dataset
  833. dataset = Dataset(
  834. tenant_id=tenant_id,
  835. name='',
  836. data_source_type=document_data["data_source"]["type"],
  837. indexing_technique=document_data["indexing_technique"],
  838. created_by=account.id,
  839. embedding_model=embedding_model.model if embedding_model else None,
  840. embedding_model_provider=embedding_model.provider if embedding_model else None,
  841. collection_binding_id=dataset_collection_binding_id,
  842. retrieval_model=retrieval_model
  843. )
  844. db.session.add(dataset)
  845. db.session.flush()
  846. documents, batch = DocumentService.save_document_with_dataset_id(dataset, document_data, account)
  847. cut_length = 18
  848. cut_name = documents[0].name[:cut_length]
  849. dataset.name = cut_name + '...'
  850. dataset.description = 'useful for when you want to answer queries about the ' + documents[0].name
  851. db.session.commit()
  852. return dataset, documents, batch
  853. @classmethod
  854. def document_create_args_validate(cls, args: dict):
  855. if 'original_document_id' not in args or not args['original_document_id']:
  856. DocumentService.data_source_args_validate(args)
  857. DocumentService.process_rule_args_validate(args)
  858. else:
  859. if ('data_source' not in args and not args['data_source']) \
  860. and ('process_rule' not in args and not args['process_rule']):
  861. raise ValueError("Data source or Process rule is required")
  862. else:
  863. if args.get('data_source'):
  864. DocumentService.data_source_args_validate(args)
  865. if args.get('process_rule'):
  866. DocumentService.process_rule_args_validate(args)
  867. @classmethod
  868. def data_source_args_validate(cls, args: dict):
  869. if 'data_source' not in args or not args['data_source']:
  870. raise ValueError("Data source is required")
  871. if not isinstance(args['data_source'], dict):
  872. raise ValueError("Data source is invalid")
  873. if 'type' not in args['data_source'] or not args['data_source']['type']:
  874. raise ValueError("Data source type is required")
  875. if args['data_source']['type'] not in Document.DATA_SOURCES:
  876. raise ValueError("Data source type is invalid")
  877. if 'info_list' not in args['data_source'] or not args['data_source']['info_list']:
  878. raise ValueError("Data source info is required")
  879. if args['data_source']['type'] == 'upload_file':
  880. if 'file_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
  881. 'file_info_list']:
  882. raise ValueError("File source info is required")
  883. if args['data_source']['type'] == 'notion_import':
  884. if 'notion_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
  885. 'notion_info_list']:
  886. raise ValueError("Notion source info is required")
  887. @classmethod
  888. def process_rule_args_validate(cls, args: dict):
  889. if 'process_rule' not in args or not args['process_rule']:
  890. raise ValueError("Process rule is required")
  891. if not isinstance(args['process_rule'], dict):
  892. raise ValueError("Process rule is invalid")
  893. if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
  894. raise ValueError("Process rule mode is required")
  895. if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
  896. raise ValueError("Process rule mode is invalid")
  897. if args['process_rule']['mode'] == 'automatic':
  898. args['process_rule']['rules'] = {}
  899. else:
  900. if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
  901. raise ValueError("Process rule rules is required")
  902. if not isinstance(args['process_rule']['rules'], dict):
  903. raise ValueError("Process rule rules is invalid")
  904. if 'pre_processing_rules' not in args['process_rule']['rules'] \
  905. or args['process_rule']['rules']['pre_processing_rules'] is None:
  906. raise ValueError("Process rule pre_processing_rules is required")
  907. if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
  908. raise ValueError("Process rule pre_processing_rules is invalid")
  909. unique_pre_processing_rule_dicts = {}
  910. for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
  911. if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
  912. raise ValueError("Process rule pre_processing_rules id is required")
  913. if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
  914. raise ValueError("Process rule pre_processing_rules id is invalid")
  915. if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
  916. raise ValueError("Process rule pre_processing_rules enabled is required")
  917. if not isinstance(pre_processing_rule['enabled'], bool):
  918. raise ValueError("Process rule pre_processing_rules enabled is invalid")
  919. unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
  920. args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
  921. if 'segmentation' not in args['process_rule']['rules'] \
  922. or args['process_rule']['rules']['segmentation'] is None:
  923. raise ValueError("Process rule segmentation is required")
  924. if not isinstance(args['process_rule']['rules']['segmentation'], dict):
  925. raise ValueError("Process rule segmentation is invalid")
  926. if 'separator' not in args['process_rule']['rules']['segmentation'] \
  927. or not args['process_rule']['rules']['segmentation']['separator']:
  928. raise ValueError("Process rule segmentation separator is required")
  929. if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
  930. raise ValueError("Process rule segmentation separator is invalid")
  931. if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
  932. or not args['process_rule']['rules']['segmentation']['max_tokens']:
  933. raise ValueError("Process rule segmentation max_tokens is required")
  934. if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
  935. raise ValueError("Process rule segmentation max_tokens is invalid")
  936. @classmethod
  937. def estimate_args_validate(cls, args: dict):
  938. if 'info_list' not in args or not args['info_list']:
  939. raise ValueError("Data source info is required")
  940. if not isinstance(args['info_list'], dict):
  941. raise ValueError("Data info is invalid")
  942. if 'process_rule' not in args or not args['process_rule']:
  943. raise ValueError("Process rule is required")
  944. if not isinstance(args['process_rule'], dict):
  945. raise ValueError("Process rule is invalid")
  946. if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
  947. raise ValueError("Process rule mode is required")
  948. if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
  949. raise ValueError("Process rule mode is invalid")
  950. if args['process_rule']['mode'] == 'automatic':
  951. args['process_rule']['rules'] = {}
  952. else:
  953. if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
  954. raise ValueError("Process rule rules is required")
  955. if not isinstance(args['process_rule']['rules'], dict):
  956. raise ValueError("Process rule rules is invalid")
  957. if 'pre_processing_rules' not in args['process_rule']['rules'] \
  958. or args['process_rule']['rules']['pre_processing_rules'] is None:
  959. raise ValueError("Process rule pre_processing_rules is required")
  960. if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
  961. raise ValueError("Process rule pre_processing_rules is invalid")
  962. unique_pre_processing_rule_dicts = {}
  963. for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
  964. if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
  965. raise ValueError("Process rule pre_processing_rules id is required")
  966. if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
  967. raise ValueError("Process rule pre_processing_rules id is invalid")
  968. if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
  969. raise ValueError("Process rule pre_processing_rules enabled is required")
  970. if not isinstance(pre_processing_rule['enabled'], bool):
  971. raise ValueError("Process rule pre_processing_rules enabled is invalid")
  972. unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
  973. args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
  974. if 'segmentation' not in args['process_rule']['rules'] \
  975. or args['process_rule']['rules']['segmentation'] is None:
  976. raise ValueError("Process rule segmentation is required")
  977. if not isinstance(args['process_rule']['rules']['segmentation'], dict):
  978. raise ValueError("Process rule segmentation is invalid")
  979. if 'separator' not in args['process_rule']['rules']['segmentation'] \
  980. or not args['process_rule']['rules']['segmentation']['separator']:
  981. raise ValueError("Process rule segmentation separator is required")
  982. if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
  983. raise ValueError("Process rule segmentation separator is invalid")
  984. if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
  985. or not args['process_rule']['rules']['segmentation']['max_tokens']:
  986. raise ValueError("Process rule segmentation max_tokens is required")
  987. if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
  988. raise ValueError("Process rule segmentation max_tokens is invalid")
  989. class SegmentService:
  990. @classmethod
  991. def segment_create_args_validate(cls, args: dict, document: Document):
  992. if document.doc_form == 'qa_model':
  993. if 'answer' not in args or not args['answer']:
  994. raise ValueError("Answer is required")
  995. if not args['answer'].strip():
  996. raise ValueError("Answer is empty")
  997. if 'content' not in args or not args['content'] or not args['content'].strip():
  998. raise ValueError("Content is empty")
  999. @classmethod
  1000. def create_segment(cls, args: dict, document: Document, dataset: Dataset):
  1001. content = args['content']
  1002. doc_id = str(uuid.uuid4())
  1003. segment_hash = helper.generate_text_hash(content)
  1004. tokens = 0
  1005. if dataset.indexing_technique == 'high_quality':
  1006. model_manager = ModelManager()
  1007. embedding_model = model_manager.get_model_instance(
  1008. tenant_id=current_user.current_tenant_id,
  1009. provider=dataset.embedding_model_provider,
  1010. model_type=ModelType.TEXT_EMBEDDING,
  1011. model=dataset.embedding_model
  1012. )
  1013. # calc embedding use tokens
  1014. model_type_instance = cast(TextEmbeddingModel, embedding_model.model_type_instance)
  1015. tokens = model_type_instance.get_num_tokens(
  1016. model=embedding_model.model,
  1017. credentials=embedding_model.credentials,
  1018. texts=[content]
  1019. )
  1020. lock_name = 'add_segment_lock_document_id_{}'.format(document.id)
  1021. with redis_client.lock(lock_name, timeout=600):
  1022. max_position = db.session.query(func.max(DocumentSegment.position)).filter(
  1023. DocumentSegment.document_id == document.id
  1024. ).scalar()
  1025. segment_document = DocumentSegment(
  1026. tenant_id=current_user.current_tenant_id,
  1027. dataset_id=document.dataset_id,
  1028. document_id=document.id,
  1029. index_node_id=doc_id,
  1030. index_node_hash=segment_hash,
  1031. position=max_position + 1 if max_position else 1,
  1032. content=content,
  1033. word_count=len(content),
  1034. tokens=tokens,
  1035. status='completed',
  1036. indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  1037. completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  1038. created_by=current_user.id
  1039. )
  1040. if document.doc_form == 'qa_model':
  1041. segment_document.answer = args['answer']
  1042. db.session.add(segment_document)
  1043. db.session.commit()
  1044. # save vector index
  1045. try:
  1046. VectorService.create_segments_vector([args['keywords']], [segment_document], dataset)
  1047. except Exception as e:
  1048. logging.exception("create segment index failed")
  1049. segment_document.enabled = False
  1050. segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1051. segment_document.status = 'error'
  1052. segment_document.error = str(e)
  1053. db.session.commit()
  1054. segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_document.id).first()
  1055. return segment
  1056. @classmethod
  1057. def multi_create_segment(cls, segments: list, document: Document, dataset: Dataset):
  1058. lock_name = 'multi_add_segment_lock_document_id_{}'.format(document.id)
  1059. with redis_client.lock(lock_name, timeout=600):
  1060. embedding_model = None
  1061. if dataset.indexing_technique == 'high_quality':
  1062. model_manager = ModelManager()
  1063. embedding_model = model_manager.get_model_instance(
  1064. tenant_id=current_user.current_tenant_id,
  1065. provider=dataset.embedding_model_provider,
  1066. model_type=ModelType.TEXT_EMBEDDING,
  1067. model=dataset.embedding_model
  1068. )
  1069. max_position = db.session.query(func.max(DocumentSegment.position)).filter(
  1070. DocumentSegment.document_id == document.id
  1071. ).scalar()
  1072. pre_segment_data_list = []
  1073. segment_data_list = []
  1074. keywords_list = []
  1075. for segment_item in segments:
  1076. content = segment_item['content']
  1077. doc_id = str(uuid.uuid4())
  1078. segment_hash = helper.generate_text_hash(content)
  1079. tokens = 0
  1080. if dataset.indexing_technique == 'high_quality' and embedding_model:
  1081. # calc embedding use tokens
  1082. model_type_instance = cast(TextEmbeddingModel, embedding_model.model_type_instance)
  1083. tokens = model_type_instance.get_num_tokens(
  1084. model=embedding_model.model,
  1085. credentials=embedding_model.credentials,
  1086. texts=[content]
  1087. )
  1088. segment_document = DocumentSegment(
  1089. tenant_id=current_user.current_tenant_id,
  1090. dataset_id=document.dataset_id,
  1091. document_id=document.id,
  1092. index_node_id=doc_id,
  1093. index_node_hash=segment_hash,
  1094. position=max_position + 1 if max_position else 1,
  1095. content=content,
  1096. word_count=len(content),
  1097. tokens=tokens,
  1098. status='completed',
  1099. indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  1100. completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  1101. created_by=current_user.id
  1102. )
  1103. if document.doc_form == 'qa_model':
  1104. segment_document.answer = segment_item['answer']
  1105. db.session.add(segment_document)
  1106. segment_data_list.append(segment_document)
  1107. pre_segment_data_list.append(segment_document)
  1108. keywords_list.append(segment_item['keywords'])
  1109. try:
  1110. # save vector index
  1111. VectorService.create_segments_vector(keywords_list, pre_segment_data_list, dataset)
  1112. except Exception as e:
  1113. logging.exception("create segment index failed")
  1114. for segment_document in segment_data_list:
  1115. segment_document.enabled = False
  1116. segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1117. segment_document.status = 'error'
  1118. segment_document.error = str(e)
  1119. db.session.commit()
  1120. return segment_data_list
  1121. @classmethod
  1122. def update_segment(cls, args: dict, segment: DocumentSegment, document: Document, dataset: Dataset):
  1123. indexing_cache_key = 'segment_{}_indexing'.format(segment.id)
  1124. cache_result = redis_client.get(indexing_cache_key)
  1125. if cache_result is not None:
  1126. raise ValueError("Segment is indexing, please try again later")
  1127. if 'enabled' in args and args['enabled'] is not None:
  1128. action = args['enabled']
  1129. if segment.enabled != action:
  1130. if not action:
  1131. segment.enabled = action
  1132. segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1133. segment.disabled_by = current_user.id
  1134. db.session.add(segment)
  1135. db.session.commit()
  1136. # Set cache to prevent indexing the same segment multiple times
  1137. redis_client.setex(indexing_cache_key, 600, 1)
  1138. disable_segment_from_index_task.delay(segment.id)
  1139. return segment
  1140. if not segment.enabled:
  1141. if 'enabled' in args and args['enabled'] is not None:
  1142. if not args['enabled']:
  1143. raise ValueError("Can't update disabled segment")
  1144. else:
  1145. raise ValueError("Can't update disabled segment")
  1146. try:
  1147. content = args['content']
  1148. if segment.content == content:
  1149. if document.doc_form == 'qa_model':
  1150. segment.answer = args['answer']
  1151. if args.get('keywords'):
  1152. segment.keywords = args['keywords']
  1153. segment.enabled = True
  1154. segment.disabled_at = None
  1155. segment.disabled_by = None
  1156. db.session.add(segment)
  1157. db.session.commit()
  1158. # update segment index task
  1159. if args['keywords']:
  1160. keyword = Keyword(dataset)
  1161. keyword.delete_by_ids([segment.index_node_id])
  1162. document = RAGDocument(
  1163. page_content=segment.content,
  1164. metadata={
  1165. "doc_id": segment.index_node_id,
  1166. "doc_hash": segment.index_node_hash,
  1167. "document_id": segment.document_id,
  1168. "dataset_id": segment.dataset_id,
  1169. }
  1170. )
  1171. keyword.add_texts([document], keywords_list=[args['keywords']])
  1172. else:
  1173. segment_hash = helper.generate_text_hash(content)
  1174. tokens = 0
  1175. if dataset.indexing_technique == 'high_quality':
  1176. model_manager = ModelManager()
  1177. embedding_model = model_manager.get_model_instance(
  1178. tenant_id=current_user.current_tenant_id,
  1179. provider=dataset.embedding_model_provider,
  1180. model_type=ModelType.TEXT_EMBEDDING,
  1181. model=dataset.embedding_model
  1182. )
  1183. # calc embedding use tokens
  1184. model_type_instance = cast(TextEmbeddingModel, embedding_model.model_type_instance)
  1185. tokens = model_type_instance.get_num_tokens(
  1186. model=embedding_model.model,
  1187. credentials=embedding_model.credentials,
  1188. texts=[content]
  1189. )
  1190. segment.content = content
  1191. segment.index_node_hash = segment_hash
  1192. segment.word_count = len(content)
  1193. segment.tokens = tokens
  1194. segment.status = 'completed'
  1195. segment.indexing_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1196. segment.completed_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1197. segment.updated_by = current_user.id
  1198. segment.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1199. segment.enabled = True
  1200. segment.disabled_at = None
  1201. segment.disabled_by = None
  1202. if document.doc_form == 'qa_model':
  1203. segment.answer = args['answer']
  1204. db.session.add(segment)
  1205. db.session.commit()
  1206. # update segment vector index
  1207. VectorService.update_segment_vector(args['keywords'], segment, dataset)
  1208. except Exception as e:
  1209. logging.exception("update segment index failed")
  1210. segment.enabled = False
  1211. segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1212. segment.status = 'error'
  1213. segment.error = str(e)
  1214. db.session.commit()
  1215. segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment.id).first()
  1216. return segment
  1217. @classmethod
  1218. def delete_segment(cls, segment: DocumentSegment, document: Document, dataset: Dataset):
  1219. indexing_cache_key = 'segment_{}_delete_indexing'.format(segment.id)
  1220. cache_result = redis_client.get(indexing_cache_key)
  1221. if cache_result is not None:
  1222. raise ValueError("Segment is deleting.")
  1223. # enabled segment need to delete index
  1224. if segment.enabled:
  1225. # send delete segment index task
  1226. redis_client.setex(indexing_cache_key, 600, 1)
  1227. delete_segment_from_index_task.delay(segment.id, segment.index_node_id, dataset.id, document.id)
  1228. db.session.delete(segment)
  1229. db.session.commit()
  1230. class DatasetCollectionBindingService:
  1231. @classmethod
  1232. def get_dataset_collection_binding(cls, provider_name: str, model_name: str,
  1233. collection_type: str = 'dataset') -> DatasetCollectionBinding:
  1234. dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
  1235. filter(DatasetCollectionBinding.provider_name == provider_name,
  1236. DatasetCollectionBinding.model_name == model_name,
  1237. DatasetCollectionBinding.type == collection_type). \
  1238. order_by(DatasetCollectionBinding.created_at). \
  1239. first()
  1240. if not dataset_collection_binding:
  1241. dataset_collection_binding = DatasetCollectionBinding(
  1242. provider_name=provider_name,
  1243. model_name=model_name,
  1244. collection_name=Dataset.gen_collection_name_by_id(str(uuid.uuid4())),
  1245. type=collection_type
  1246. )
  1247. db.session.add(dataset_collection_binding)
  1248. db.session.commit()
  1249. return dataset_collection_binding
  1250. @classmethod
  1251. def get_dataset_collection_binding_by_id_and_type(cls, collection_binding_id: str,
  1252. collection_type: str = 'dataset') -> DatasetCollectionBinding:
  1253. dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
  1254. filter(DatasetCollectionBinding.id == collection_binding_id,
  1255. DatasetCollectionBinding.type == collection_type). \
  1256. order_by(DatasetCollectionBinding.created_at). \
  1257. first()
  1258. return dataset_collection_binding