Joe 688b8fe114 fix: langfuse logical operator error (#5948) 9 mēneši atpakaļ
..
configs cb8feb732f refactor: Create a `dify_config` with Pydantic. (#5938) 9 mēneši atpakaļ
constants 2e718b85e9 fix(api): language list (#5649) 10 mēneši atpakaļ
controllers 59ad091e69 feat: add export permission (#5841) 9 mēneši atpakaļ
core 688b8fe114 fix: langfuse logical operator error (#5948) 9 mēneši atpakaļ
docker cb09dbef66 feat: correctly delete applications using Celery workers (#5787) 9 mēneši atpakaļ
events cb09dbef66 feat: correctly delete applications using Celery workers (#5787) 9 mēneši atpakaļ
extensions 1d3e96ffa6 add support oracle oci object storage (#5616) 9 mēneši atpakaļ
fields 4c0a31d38b FR: #4048 - Add color customization to the chatbot (#4885) 10 mēneši atpakaļ
libs dcb72e0067 chore: apply flake8-comprehensions Ruff rules to improve collection comprehensions (#5652) 10 mēneši atpakaļ
migrations 1e045a0187 fix: slow sql of ops tracing (#5749) 9 mēneši atpakaļ
models 1e045a0187 fix: slow sql of ops tracing (#5749) 9 mēneši atpakaļ
schedule 6c4e6bf1d6 Feat/dify rag (#2528) 1 gadu atpakaļ
services 0944ca9d91 Fix/remove tsne position test (#5858) 9 mēneši atpakaļ
tasks af308b99a3 sync delete app table record when delete app (#5819) 9 mēneši atpakaļ
templates 3d92784bd4 fix: email template style (#1914) 1 gadu atpakaļ
tests c490bdfbf9 fix: zhipuai pytest correction (#5934) 9 mēneši atpakaļ
.dockerignore 27f0ae8416 build: support Poetry for depencencies tool in api's Dockerfile (#5105) 10 mēneši atpakaļ
.env.example 1d3e96ffa6 add support oracle oci object storage (#5616) 9 mēneši atpakaļ
Dockerfile 73ce945d40 Feat/add json process tool (#5555) 10 mēneši atpakaļ
README.md 6e256507d3 doc: docker-compose won't start due to wrong README (#5859) 9 mēneši atpakaļ
app.py cb8feb732f refactor: Create a `dify_config` with Pydantic. (#5938) 9 mēneši atpakaļ
commands.py cb8feb732f refactor: Create a `dify_config` with Pydantic. (#5938) 9 mēneši atpakaļ
poetry.lock fdfbbde10d [seanguo] modify bedrock Claude3 invoke method to converse API (#5768) 9 mēneši atpakaļ
poetry.toml f62f71a81a build: initial support for poetry build tool (#4513) 10 mēneši atpakaļ
pyproject.toml fdfbbde10d [seanguo] modify bedrock Claude3 invoke method to converse API (#5768) 9 mēneši atpakaļ

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp .middleware.env.example .middleware.env
   docker compose -f docker-compose.middleware.yaml -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000...
  3. If you need to debug local async processing, please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh