segment.py 9.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220
  1. from flask_login import current_user
  2. from flask_restful import marshal, reqparse
  3. from werkzeug.exceptions import NotFound
  4. from controllers.service_api import api
  5. from controllers.service_api.app.error import ProviderNotInitializeError
  6. from controllers.service_api.wraps import (
  7. DatasetApiResource,
  8. cloud_edition_billing_knowledge_limit_check,
  9. cloud_edition_billing_resource_check,
  10. )
  11. from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
  12. from core.model_manager import ModelManager
  13. from core.model_runtime.entities.model_entities import ModelType
  14. from extensions.ext_database import db
  15. from fields.segment_fields import segment_fields
  16. from models.dataset import Dataset, DocumentSegment
  17. from services.dataset_service import DatasetService, DocumentService, SegmentService
  18. class SegmentApi(DatasetApiResource):
  19. """Resource for segments."""
  20. @cloud_edition_billing_resource_check('vector_space', 'dataset')
  21. @cloud_edition_billing_knowledge_limit_check('add_segment', 'dataset')
  22. def post(self, tenant_id, dataset_id, document_id):
  23. """Create single segment."""
  24. # check dataset
  25. dataset_id = str(dataset_id)
  26. tenant_id = str(tenant_id)
  27. dataset = db.session.query(Dataset).filter(
  28. Dataset.tenant_id == tenant_id,
  29. Dataset.id == dataset_id
  30. ).first()
  31. if not dataset:
  32. raise NotFound('Dataset not found.')
  33. # check document
  34. document_id = str(document_id)
  35. document = DocumentService.get_document(dataset.id, document_id)
  36. if not document:
  37. raise NotFound('Document not found.')
  38. # check embedding model setting
  39. if dataset.indexing_technique == 'high_quality':
  40. try:
  41. model_manager = ModelManager()
  42. model_manager.get_model_instance(
  43. tenant_id=current_user.current_tenant_id,
  44. provider=dataset.embedding_model_provider,
  45. model_type=ModelType.TEXT_EMBEDDING,
  46. model=dataset.embedding_model
  47. )
  48. except LLMBadRequestError:
  49. raise ProviderNotInitializeError(
  50. "No Embedding Model available. Please configure a valid provider "
  51. "in the Settings -> Model Provider.")
  52. except ProviderTokenNotInitError as ex:
  53. raise ProviderNotInitializeError(ex.description)
  54. # validate args
  55. parser = reqparse.RequestParser()
  56. parser.add_argument('segments', type=list, required=False, nullable=True, location='json')
  57. args = parser.parse_args()
  58. if args['segments'] is not None:
  59. for args_item in args['segments']:
  60. SegmentService.segment_create_args_validate(args_item, document)
  61. segments = SegmentService.multi_create_segment(args['segments'], document, dataset)
  62. return {
  63. 'data': marshal(segments, segment_fields),
  64. 'doc_form': document.doc_form
  65. }, 200
  66. else:
  67. return {"error": "Segemtns is required"}, 400
  68. def get(self, tenant_id, dataset_id, document_id):
  69. """Create single segment."""
  70. # check dataset
  71. dataset_id = str(dataset_id)
  72. tenant_id = str(tenant_id)
  73. dataset = db.session.query(Dataset).filter(
  74. Dataset.tenant_id == tenant_id,
  75. Dataset.id == dataset_id
  76. ).first()
  77. if not dataset:
  78. raise NotFound('Dataset not found.')
  79. # check document
  80. document_id = str(document_id)
  81. document = DocumentService.get_document(dataset.id, document_id)
  82. if not document:
  83. raise NotFound('Document not found.')
  84. # check embedding model setting
  85. if dataset.indexing_technique == 'high_quality':
  86. try:
  87. model_manager = ModelManager()
  88. model_manager.get_model_instance(
  89. tenant_id=current_user.current_tenant_id,
  90. provider=dataset.embedding_model_provider,
  91. model_type=ModelType.TEXT_EMBEDDING,
  92. model=dataset.embedding_model
  93. )
  94. except LLMBadRequestError:
  95. raise ProviderNotInitializeError(
  96. "No Embedding Model available. Please configure a valid provider "
  97. "in the Settings -> Model Provider.")
  98. except ProviderTokenNotInitError as ex:
  99. raise ProviderNotInitializeError(ex.description)
  100. parser = reqparse.RequestParser()
  101. parser.add_argument('status', type=str,
  102. action='append', default=[], location='args')
  103. parser.add_argument('keyword', type=str, default=None, location='args')
  104. args = parser.parse_args()
  105. status_list = args['status']
  106. keyword = args['keyword']
  107. query = DocumentSegment.query.filter(
  108. DocumentSegment.document_id == str(document_id),
  109. DocumentSegment.tenant_id == current_user.current_tenant_id
  110. )
  111. if status_list:
  112. query = query.filter(DocumentSegment.status.in_(status_list))
  113. if keyword:
  114. query = query.where(DocumentSegment.content.ilike(f'%{keyword}%'))
  115. total = query.count()
  116. segments = query.order_by(DocumentSegment.position).all()
  117. return {
  118. 'data': marshal(segments, segment_fields),
  119. 'doc_form': document.doc_form,
  120. 'total': total
  121. }, 200
  122. class DatasetSegmentApi(DatasetApiResource):
  123. def delete(self, tenant_id, dataset_id, document_id, segment_id):
  124. # check dataset
  125. dataset_id = str(dataset_id)
  126. tenant_id = str(tenant_id)
  127. dataset = db.session.query(Dataset).filter(
  128. Dataset.tenant_id == tenant_id,
  129. Dataset.id == dataset_id
  130. ).first()
  131. if not dataset:
  132. raise NotFound('Dataset not found.')
  133. # check user's model setting
  134. DatasetService.check_dataset_model_setting(dataset)
  135. # check document
  136. document_id = str(document_id)
  137. document = DocumentService.get_document(dataset_id, document_id)
  138. if not document:
  139. raise NotFound('Document not found.')
  140. # check segment
  141. segment = DocumentSegment.query.filter(
  142. DocumentSegment.id == str(segment_id),
  143. DocumentSegment.tenant_id == current_user.current_tenant_id
  144. ).first()
  145. if not segment:
  146. raise NotFound('Segment not found.')
  147. SegmentService.delete_segment(segment, document, dataset)
  148. return {'result': 'success'}, 200
  149. @cloud_edition_billing_resource_check('vector_space', 'dataset')
  150. def post(self, tenant_id, dataset_id, document_id, segment_id):
  151. # check dataset
  152. dataset_id = str(dataset_id)
  153. tenant_id = str(tenant_id)
  154. dataset = db.session.query(Dataset).filter(
  155. Dataset.tenant_id == tenant_id,
  156. Dataset.id == dataset_id
  157. ).first()
  158. if not dataset:
  159. raise NotFound('Dataset not found.')
  160. # check user's model setting
  161. DatasetService.check_dataset_model_setting(dataset)
  162. # check document
  163. document_id = str(document_id)
  164. document = DocumentService.get_document(dataset_id, document_id)
  165. if not document:
  166. raise NotFound('Document not found.')
  167. if dataset.indexing_technique == 'high_quality':
  168. # check embedding model setting
  169. try:
  170. model_manager = ModelManager()
  171. model_manager.get_model_instance(
  172. tenant_id=current_user.current_tenant_id,
  173. provider=dataset.embedding_model_provider,
  174. model_type=ModelType.TEXT_EMBEDDING,
  175. model=dataset.embedding_model
  176. )
  177. except LLMBadRequestError:
  178. raise ProviderNotInitializeError(
  179. "No Embedding Model available. Please configure a valid provider "
  180. "in the Settings -> Model Provider.")
  181. except ProviderTokenNotInitError as ex:
  182. raise ProviderNotInitializeError(ex.description)
  183. # check segment
  184. segment_id = str(segment_id)
  185. segment = DocumentSegment.query.filter(
  186. DocumentSegment.id == str(segment_id),
  187. DocumentSegment.tenant_id == current_user.current_tenant_id
  188. ).first()
  189. if not segment:
  190. raise NotFound('Segment not found.')
  191. # validate args
  192. parser = reqparse.RequestParser()
  193. parser.add_argument('segment', type=dict, required=False, nullable=True, location='json')
  194. args = parser.parse_args()
  195. SegmentService.segment_create_args_validate(args['segment'], document)
  196. segment = SegmentService.update_segment(args['segment'], segment, document, dataset)
  197. return {
  198. 'data': marshal(segment, segment_fields),
  199. 'doc_form': document.doc_form
  200. }, 200
  201. api.add_resource(SegmentApi, '/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments')
  202. api.add_resource(DatasetSegmentApi, '/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments/<uuid:segment_id>')