retrieval_service.py 6.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169
  1. import threading
  2. from typing import Optional
  3. from flask import Flask, current_app
  4. from core.rag.data_post_processor.data_post_processor import DataPostProcessor
  5. from core.rag.datasource.keyword.keyword_factory import Keyword
  6. from core.rag.datasource.vdb.vector_factory import Vector
  7. from extensions.ext_database import db
  8. from models.dataset import Dataset
  9. default_retrieval_model = {
  10. 'search_method': 'semantic_search',
  11. 'reranking_enable': False,
  12. 'reranking_model': {
  13. 'reranking_provider_name': '',
  14. 'reranking_model_name': ''
  15. },
  16. 'top_k': 2,
  17. 'score_threshold_enabled': False
  18. }
  19. class RetrievalService:
  20. @classmethod
  21. def retrieve(cls, retrival_method: str, dataset_id: str, query: str,
  22. top_k: int, score_threshold: Optional[float] = .0, reranking_model: Optional[dict] = None):
  23. dataset = db.session.query(Dataset).filter(
  24. Dataset.id == dataset_id
  25. ).first()
  26. if not dataset or dataset.available_document_count == 0 or dataset.available_segment_count == 0:
  27. return []
  28. all_documents = []
  29. threads = []
  30. # retrieval_model source with keyword
  31. if retrival_method == 'keyword_search':
  32. keyword_thread = threading.Thread(target=RetrievalService.keyword_search, kwargs={
  33. 'flask_app': current_app._get_current_object(),
  34. 'dataset_id': dataset_id,
  35. 'query': query,
  36. 'top_k': top_k
  37. })
  38. threads.append(keyword_thread)
  39. keyword_thread.start()
  40. # retrieval_model source with semantic
  41. if retrival_method == 'semantic_search' or retrival_method == 'hybrid_search':
  42. embedding_thread = threading.Thread(target=RetrievalService.embedding_search, kwargs={
  43. 'flask_app': current_app._get_current_object(),
  44. 'dataset_id': dataset_id,
  45. 'query': query,
  46. 'top_k': top_k,
  47. 'score_threshold': score_threshold,
  48. 'reranking_model': reranking_model,
  49. 'all_documents': all_documents,
  50. 'retrival_method': retrival_method
  51. })
  52. threads.append(embedding_thread)
  53. embedding_thread.start()
  54. # retrieval source with full text
  55. if retrival_method == 'full_text_search' or retrival_method == 'hybrid_search':
  56. full_text_index_thread = threading.Thread(target=RetrievalService.full_text_index_search, kwargs={
  57. 'flask_app': current_app._get_current_object(),
  58. 'dataset_id': dataset_id,
  59. 'query': query,
  60. 'retrival_method': retrival_method,
  61. 'score_threshold': score_threshold,
  62. 'top_k': top_k,
  63. 'reranking_model': reranking_model,
  64. 'all_documents': all_documents
  65. })
  66. threads.append(full_text_index_thread)
  67. full_text_index_thread.start()
  68. for thread in threads:
  69. thread.join()
  70. if retrival_method == 'hybrid_search':
  71. data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)
  72. all_documents = data_post_processor.invoke(
  73. query=query,
  74. documents=all_documents,
  75. score_threshold=score_threshold,
  76. top_n=top_k
  77. )
  78. return all_documents
  79. @classmethod
  80. def keyword_search(cls, flask_app: Flask, dataset_id: str, query: str,
  81. top_k: int, all_documents: list):
  82. with flask_app.app_context():
  83. dataset = db.session.query(Dataset).filter(
  84. Dataset.id == dataset_id
  85. ).first()
  86. keyword = Keyword(
  87. dataset=dataset
  88. )
  89. documents = keyword.search(
  90. query,
  91. k=top_k
  92. )
  93. all_documents.extend(documents)
  94. @classmethod
  95. def embedding_search(cls, flask_app: Flask, dataset_id: str, query: str,
  96. top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
  97. all_documents: list, retrival_method: str):
  98. with flask_app.app_context():
  99. dataset = db.session.query(Dataset).filter(
  100. Dataset.id == dataset_id
  101. ).first()
  102. vector = Vector(
  103. dataset=dataset
  104. )
  105. documents = vector.search_by_vector(
  106. query,
  107. search_type='similarity_score_threshold',
  108. k=top_k,
  109. score_threshold=score_threshold,
  110. filter={
  111. 'group_id': [dataset.id]
  112. }
  113. )
  114. if documents:
  115. if reranking_model and retrival_method == 'semantic_search':
  116. data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)
  117. all_documents.extend(data_post_processor.invoke(
  118. query=query,
  119. documents=documents,
  120. score_threshold=score_threshold,
  121. top_n=len(documents)
  122. ))
  123. else:
  124. all_documents.extend(documents)
  125. @classmethod
  126. def full_text_index_search(cls, flask_app: Flask, dataset_id: str, query: str,
  127. top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
  128. all_documents: list, retrival_method: str):
  129. with flask_app.app_context():
  130. dataset = db.session.query(Dataset).filter(
  131. Dataset.id == dataset_id
  132. ).first()
  133. vector_processor = Vector(
  134. dataset=dataset,
  135. )
  136. documents = vector_processor.search_by_full_text(
  137. query,
  138. top_k=top_k
  139. )
  140. if documents:
  141. if reranking_model and retrival_method == 'full_text_search':
  142. data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)
  143. all_documents.extend(data_post_processor.invoke(
  144. query=query,
  145. documents=documents,
  146. score_threshold=score_threshold,
  147. top_n=len(documents)
  148. ))
  149. else:
  150. all_documents.extend(documents)