zhangzhiqiangcs d4c55748f1 doc: fix about model features (#6619) 9 months ago
..
configs 49729647ea bump to 0.6.15 (#6592) 9 months ago
constants 5e6fc58db3 Feat/environment variables in workflow (#6515) 9 months ago
contexts 5e6fc58db3 Feat/environment variables in workflow (#6515) 9 months ago
controllers 8123a00e97 feat: update prompt generate (#6516) 9 months ago
core d4c55748f1 doc: fix about model features (#6619) 9 months ago
docker 5236cb1888 fix: kill signal is not passed to the main process (#6159) 9 months ago
events d320d1468d Feat/delete file when clean document (#5882) 9 months ago
extensions 7c397f5722 update celery beat scheduler time to env (#6352) 9 months ago
fields e4bb943fe5 Feat/delete single dataset retrival (#6570) 9 months ago
libs 617847e3c0 fix(api/services/app_generate_service.py): Remove wrong type hints. (#6535) 9 months ago
migrations f324374b95 Fix/6615 40 varchar limit on model name (#6623) 9 months ago
models f324374b95 Fix/6615 40 varchar limit on model name (#6623) 9 months ago
schedule 5e6fc58db3 Feat/environment variables in workflow (#6515) 9 months ago
services 05141ede16 chore: optimize asynchronous deletion performance of app related data (#6634) 9 months ago
tasks 0625db0bf5 chore: optimize asynchronous workflow deletion performance of app related data (#6639) 9 months ago
templates 00b4cc3cd4 feat: implement forgot password feature (#5534) 9 months ago
tests 2bc0632d0d fix(segments): Support NoneType. (#6581) 9 months ago
.dockerignore 27f0ae8416 build: support Poetry for depencencies tool in api's Dockerfile (#5105) 10 months ago
.env.example 7c397f5722 update celery beat scheduler time to env (#6352) 9 months ago
Dockerfile 9b7c74a5d9 chore: skip pip upgrade preparation in api dockerfile (#5999) 9 months ago
README.md 2d6624cf9e typo: Update README.md (#5987) 9 months ago
app.py 5e6fc58db3 Feat/environment variables in workflow (#6515) 9 months ago
commands.py 7c70eb87bc feat: support AnalyticDB vector store (#5586) 9 months ago
poetry.lock e4bb943fe5 Feat/delete single dataset retrival (#6570) 9 months ago
poetry.toml f62f71a81a build: initial support for poetry build tool (#4513) 10 months ago
pyproject.toml e4bb943fe5 Feat/delete single dataset retrival (#6570) 9 months ago

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   docker compose -f docker-compose.middleware.yaml -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000...
  3. If you need to debug local async processing, please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh