takatost 46a5294d94 feat(backend): support import DSL from URL (#6287) преди 9 месеца
..
configs 63e34e5227 feat: support MyScale vector database (#6092) преди 9 месеца
constants 6ef401a9f0 feat:add tts-streaming config and future (#5492) преди 9 месеца
controllers 46a5294d94 feat(backend): support import DSL from URL (#6287) преди 9 месеца
core ec181649ae Update model provider configuration for Triton Inference Server and X… (#6274) преди 9 месеца
docker cb09dbef66 feat: correctly delete applications using Celery workers (#5787) преди 9 месеца
events cb09dbef66 feat: correctly delete applications using Celery workers (#5787) преди 9 месеца
extensions 678ad6b7eb Fix/file stream azure blob (#6196) преди 9 месеца
fields 9622fbb62f feat: app rate limit (#5844) преди 9 месеца
libs 9622fbb62f feat: app rate limit (#5844) преди 9 месеца
migrations 9622fbb62f feat: app rate limit (#5844) преди 9 месеца
models 9622fbb62f feat: app rate limit (#5844) преди 9 месеца
schedule 1df71ec64d refactor(api): switch to dify_config with Pydantic in controllers and schedule (#6237) преди 9 месеца
services 46a5294d94 feat(backend): support import DSL from URL (#6287) преди 9 месеца
tasks 7b225a5ab0 refactor(services/tasks): Swtich to dify_config witch Pydantic (#6203) преди 9 месеца
templates 00b4cc3cd4 feat: implement forgot password feature (#5534) преди 9 месеца
tests 63e34e5227 feat: support MyScale vector database (#6092) преди 9 месеца
.dockerignore 27f0ae8416 build: support Poetry for depencencies tool in api's Dockerfile (#5105) преди 10 месеца
.env.example 63e34e5227 feat: support MyScale vector database (#6092) преди 9 месеца
Dockerfile 9b7c74a5d9 chore: skip pip upgrade preparation in api dockerfile (#5999) преди 9 месеца
README.md 2d6624cf9e typo: Update README.md (#5987) преди 9 месеца
app.py d7f75d17cc Chore/remove-unused-code (#5917) преди 9 месеца
commands.py 7c70eb87bc feat: support AnalyticDB vector store (#5586) преди 9 месеца
poetry.lock 63e34e5227 feat: support MyScale vector database (#6092) преди 9 месеца
poetry.toml f62f71a81a build: initial support for poetry build tool (#4513) преди 10 месеца
pyproject.toml 63e34e5227 feat: support MyScale vector database (#6092) преди 9 месеца

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   docker compose -f docker-compose.middleware.yaml -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000...
  3. If you need to debug local async processing, please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh