indexing_runner.py 39 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912
  1. import datetime
  2. import json
  3. import logging
  4. import re
  5. import threading
  6. import time
  7. import uuid
  8. from typing import List, Optional, cast
  9. from flask import Flask, current_app
  10. from flask_login import current_user
  11. from langchain.schema import Document
  12. from langchain.text_splitter import TextSplitter
  13. from sqlalchemy.orm.exc import ObjectDeletedError
  14. from core.data_loader.file_extractor import FileExtractor
  15. from core.data_loader.loader.notion import NotionLoader
  16. from core.docstore.dataset_docstore import DatasetDocumentStore
  17. from core.errors.error import ProviderTokenNotInitError
  18. from core.generator.llm_generator import LLMGenerator
  19. from core.index.index import IndexBuilder
  20. from core.model_manager import ModelInstance, ModelManager
  21. from core.model_runtime.entities.model_entities import ModelType, PriceType
  22. from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
  23. from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
  24. from core.spiltter.fixed_text_splitter import EnhanceRecursiveCharacterTextSplitter, FixedRecursiveCharacterTextSplitter
  25. from extensions.ext_database import db
  26. from extensions.ext_redis import redis_client
  27. from extensions.ext_storage import storage
  28. from libs import helper
  29. from models.dataset import Dataset, DatasetProcessRule, DocumentSegment
  30. from models.dataset import Document as DatasetDocument
  31. from models.model import UploadFile
  32. from models.source import DataSourceBinding
  33. class IndexingRunner:
  34. def __init__(self):
  35. self.storage = storage
  36. self.model_manager = ModelManager()
  37. def run(self, dataset_documents: List[DatasetDocument]):
  38. """Run the indexing process."""
  39. for dataset_document in dataset_documents:
  40. try:
  41. # get dataset
  42. dataset = Dataset.query.filter_by(
  43. id=dataset_document.dataset_id
  44. ).first()
  45. if not dataset:
  46. raise ValueError("no dataset found")
  47. # get the process rule
  48. processing_rule = db.session.query(DatasetProcessRule). \
  49. filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
  50. first()
  51. # load file
  52. text_docs = self._load_data(dataset_document, processing_rule.mode == 'automatic')
  53. # get embedding model instance
  54. embedding_model_instance = None
  55. if dataset.indexing_technique == 'high_quality':
  56. if dataset.embedding_model_provider:
  57. embedding_model_instance = self.model_manager.get_model_instance(
  58. tenant_id=dataset.tenant_id,
  59. provider=dataset.embedding_model_provider,
  60. model_type=ModelType.TEXT_EMBEDDING,
  61. model=dataset.embedding_model
  62. )
  63. else:
  64. embedding_model_instance = self.model_manager.get_default_model_instance(
  65. tenant_id=dataset.tenant_id,
  66. model_type=ModelType.TEXT_EMBEDDING,
  67. )
  68. # get splitter
  69. splitter = self._get_splitter(processing_rule, embedding_model_instance)
  70. # split to documents
  71. documents = self._step_split(
  72. text_docs=text_docs,
  73. splitter=splitter,
  74. dataset=dataset,
  75. dataset_document=dataset_document,
  76. processing_rule=processing_rule
  77. )
  78. self._build_index(
  79. dataset=dataset,
  80. dataset_document=dataset_document,
  81. documents=documents
  82. )
  83. except DocumentIsPausedException:
  84. raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
  85. except ProviderTokenNotInitError as e:
  86. dataset_document.indexing_status = 'error'
  87. dataset_document.error = str(e.description)
  88. dataset_document.stopped_at = datetime.datetime.utcnow()
  89. db.session.commit()
  90. except ObjectDeletedError:
  91. logging.warning('Document deleted, document id: {}'.format(dataset_document.id))
  92. except Exception as e:
  93. logging.exception("consume document failed")
  94. dataset_document.indexing_status = 'error'
  95. dataset_document.error = str(e)
  96. dataset_document.stopped_at = datetime.datetime.utcnow()
  97. db.session.commit()
  98. def run_in_splitting_status(self, dataset_document: DatasetDocument):
  99. """Run the indexing process when the index_status is splitting."""
  100. try:
  101. # get dataset
  102. dataset = Dataset.query.filter_by(
  103. id=dataset_document.dataset_id
  104. ).first()
  105. if not dataset:
  106. raise ValueError("no dataset found")
  107. # get exist document_segment list and delete
  108. document_segments = DocumentSegment.query.filter_by(
  109. dataset_id=dataset.id,
  110. document_id=dataset_document.id
  111. ).all()
  112. for document_segment in document_segments:
  113. db.session.delete(document_segment)
  114. db.session.commit()
  115. # get the process rule
  116. processing_rule = db.session.query(DatasetProcessRule). \
  117. filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
  118. first()
  119. # load file
  120. text_docs = self._load_data(dataset_document, processing_rule.mode == 'automatic')
  121. # get embedding model instance
  122. embedding_model_instance = None
  123. if dataset.indexing_technique == 'high_quality':
  124. if dataset.embedding_model_provider:
  125. embedding_model_instance = self.model_manager.get_model_instance(
  126. tenant_id=dataset.tenant_id,
  127. provider=dataset.embedding_model_provider,
  128. model_type=ModelType.TEXT_EMBEDDING,
  129. model=dataset.embedding_model
  130. )
  131. else:
  132. embedding_model_instance = self.model_manager.get_default_model_instance(
  133. tenant_id=dataset.tenant_id,
  134. model_type=ModelType.TEXT_EMBEDDING,
  135. )
  136. # get splitter
  137. splitter = self._get_splitter(processing_rule, embedding_model_instance)
  138. # split to documents
  139. documents = self._step_split(
  140. text_docs=text_docs,
  141. splitter=splitter,
  142. dataset=dataset,
  143. dataset_document=dataset_document,
  144. processing_rule=processing_rule
  145. )
  146. # build index
  147. self._build_index(
  148. dataset=dataset,
  149. dataset_document=dataset_document,
  150. documents=documents
  151. )
  152. except DocumentIsPausedException:
  153. raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
  154. except ProviderTokenNotInitError as e:
  155. dataset_document.indexing_status = 'error'
  156. dataset_document.error = str(e.description)
  157. dataset_document.stopped_at = datetime.datetime.utcnow()
  158. db.session.commit()
  159. except Exception as e:
  160. logging.exception("consume document failed")
  161. dataset_document.indexing_status = 'error'
  162. dataset_document.error = str(e)
  163. dataset_document.stopped_at = datetime.datetime.utcnow()
  164. db.session.commit()
  165. def run_in_indexing_status(self, dataset_document: DatasetDocument):
  166. """Run the indexing process when the index_status is indexing."""
  167. try:
  168. # get dataset
  169. dataset = Dataset.query.filter_by(
  170. id=dataset_document.dataset_id
  171. ).first()
  172. if not dataset:
  173. raise ValueError("no dataset found")
  174. # get exist document_segment list and delete
  175. document_segments = DocumentSegment.query.filter_by(
  176. dataset_id=dataset.id,
  177. document_id=dataset_document.id
  178. ).all()
  179. documents = []
  180. if document_segments:
  181. for document_segment in document_segments:
  182. # transform segment to node
  183. if document_segment.status != "completed":
  184. document = Document(
  185. page_content=document_segment.content,
  186. metadata={
  187. "doc_id": document_segment.index_node_id,
  188. "doc_hash": document_segment.index_node_hash,
  189. "document_id": document_segment.document_id,
  190. "dataset_id": document_segment.dataset_id,
  191. }
  192. )
  193. documents.append(document)
  194. # build index
  195. self._build_index(
  196. dataset=dataset,
  197. dataset_document=dataset_document,
  198. documents=documents
  199. )
  200. except DocumentIsPausedException:
  201. raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
  202. except ProviderTokenNotInitError as e:
  203. dataset_document.indexing_status = 'error'
  204. dataset_document.error = str(e.description)
  205. dataset_document.stopped_at = datetime.datetime.utcnow()
  206. db.session.commit()
  207. except Exception as e:
  208. logging.exception("consume document failed")
  209. dataset_document.indexing_status = 'error'
  210. dataset_document.error = str(e)
  211. dataset_document.stopped_at = datetime.datetime.utcnow()
  212. db.session.commit()
  213. def file_indexing_estimate(self, tenant_id: str, file_details: List[UploadFile], tmp_processing_rule: dict,
  214. doc_form: str = None, doc_language: str = 'English', dataset_id: str = None,
  215. indexing_technique: str = 'economy') -> dict:
  216. """
  217. Estimate the indexing for the document.
  218. """
  219. embedding_model_instance = None
  220. if dataset_id:
  221. dataset = Dataset.query.filter_by(
  222. id=dataset_id
  223. ).first()
  224. if not dataset:
  225. raise ValueError('Dataset not found.')
  226. if dataset.indexing_technique == 'high_quality' or indexing_technique == 'high_quality':
  227. if dataset.embedding_model_provider:
  228. embedding_model_instance = self.model_manager.get_model_instance(
  229. tenant_id=tenant_id,
  230. provider=dataset.embedding_model_provider,
  231. model_type=ModelType.TEXT_EMBEDDING,
  232. model=dataset.embedding_model
  233. )
  234. else:
  235. embedding_model_instance = self.model_manager.get_default_model_instance(
  236. tenant_id=tenant_id,
  237. model_type=ModelType.TEXT_EMBEDDING,
  238. )
  239. else:
  240. if indexing_technique == 'high_quality':
  241. embedding_model_instance = self.model_manager.get_default_model_instance(
  242. tenant_id=tenant_id,
  243. model_type=ModelType.TEXT_EMBEDDING,
  244. )
  245. tokens = 0
  246. preview_texts = []
  247. total_segments = 0
  248. total_price = 0
  249. currency = 'USD'
  250. for file_detail in file_details:
  251. processing_rule = DatasetProcessRule(
  252. mode=tmp_processing_rule["mode"],
  253. rules=json.dumps(tmp_processing_rule["rules"])
  254. )
  255. # load data from file
  256. text_docs = FileExtractor.load(file_detail, is_automatic=processing_rule.mode == 'automatic')
  257. # get splitter
  258. splitter = self._get_splitter(processing_rule, embedding_model_instance)
  259. # split to documents
  260. documents = self._split_to_documents_for_estimate(
  261. text_docs=text_docs,
  262. splitter=splitter,
  263. processing_rule=processing_rule
  264. )
  265. total_segments += len(documents)
  266. for document in documents:
  267. if len(preview_texts) < 5:
  268. preview_texts.append(document.page_content)
  269. if indexing_technique == 'high_quality' or embedding_model_instance:
  270. embedding_model_type_instance = embedding_model_instance.model_type_instance
  271. embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance)
  272. tokens += embedding_model_type_instance.get_num_tokens(
  273. model=embedding_model_instance.model,
  274. credentials=embedding_model_instance.credentials,
  275. texts=[self.filter_string(document.page_content)]
  276. )
  277. if doc_form and doc_form == 'qa_model':
  278. model_instance = self.model_manager.get_default_model_instance(
  279. tenant_id=tenant_id,
  280. model_type=ModelType.LLM
  281. )
  282. model_type_instance = model_instance.model_type_instance
  283. model_type_instance = cast(LargeLanguageModel, model_type_instance)
  284. if len(preview_texts) > 0:
  285. # qa model document
  286. response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0],
  287. doc_language)
  288. document_qa_list = self.format_split_text(response)
  289. price_info = model_type_instance.get_price(
  290. model=model_instance.model,
  291. credentials=model_instance.credentials,
  292. price_type=PriceType.INPUT,
  293. tokens=total_segments * 2000,
  294. )
  295. return {
  296. "total_segments": total_segments * 20,
  297. "tokens": total_segments * 2000,
  298. "total_price": '{:f}'.format(price_info.total_amount),
  299. "currency": price_info.currency,
  300. "qa_preview": document_qa_list,
  301. "preview": preview_texts
  302. }
  303. if embedding_model_instance:
  304. embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_instance.model_type_instance)
  305. embedding_price_info = embedding_model_type_instance.get_price(
  306. model=embedding_model_instance.model,
  307. credentials=embedding_model_instance.credentials,
  308. price_type=PriceType.INPUT,
  309. tokens=tokens
  310. )
  311. total_price = '{:f}'.format(embedding_price_info.total_amount)
  312. currency = embedding_price_info.currency
  313. return {
  314. "total_segments": total_segments,
  315. "tokens": tokens,
  316. "total_price": total_price,
  317. "currency": currency,
  318. "preview": preview_texts
  319. }
  320. def notion_indexing_estimate(self, tenant_id: str, notion_info_list: list, tmp_processing_rule: dict,
  321. doc_form: str = None, doc_language: str = 'English', dataset_id: str = None,
  322. indexing_technique: str = 'economy') -> dict:
  323. """
  324. Estimate the indexing for the document.
  325. """
  326. embedding_model_instance = None
  327. if dataset_id:
  328. dataset = Dataset.query.filter_by(
  329. id=dataset_id
  330. ).first()
  331. if not dataset:
  332. raise ValueError('Dataset not found.')
  333. if dataset.indexing_technique == 'high_quality' or indexing_technique == 'high_quality':
  334. if dataset.embedding_model_provider:
  335. embedding_model_instance = self.model_manager.get_model_instance(
  336. tenant_id=tenant_id,
  337. provider=dataset.embedding_model_provider,
  338. model_type=ModelType.TEXT_EMBEDDING,
  339. model=dataset.embedding_model
  340. )
  341. else:
  342. embedding_model_instance = self.model_manager.get_default_model_instance(
  343. tenant_id=tenant_id,
  344. model_type=ModelType.TEXT_EMBEDDING,
  345. )
  346. else:
  347. if indexing_technique == 'high_quality':
  348. embedding_model_instance = self.model_manager.get_default_model_instance(
  349. tenant_id=tenant_id,
  350. model_type=ModelType.TEXT_EMBEDDING
  351. )
  352. # load data from notion
  353. tokens = 0
  354. preview_texts = []
  355. total_segments = 0
  356. total_price = 0
  357. currency = 'USD'
  358. for notion_info in notion_info_list:
  359. workspace_id = notion_info['workspace_id']
  360. data_source_binding = DataSourceBinding.query.filter(
  361. db.and_(
  362. DataSourceBinding.tenant_id == current_user.current_tenant_id,
  363. DataSourceBinding.provider == 'notion',
  364. DataSourceBinding.disabled == False,
  365. DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
  366. )
  367. ).first()
  368. if not data_source_binding:
  369. raise ValueError('Data source binding not found.')
  370. for page in notion_info['pages']:
  371. loader = NotionLoader(
  372. notion_access_token=data_source_binding.access_token,
  373. notion_workspace_id=workspace_id,
  374. notion_obj_id=page['page_id'],
  375. notion_page_type=page['type']
  376. )
  377. documents = loader.load()
  378. processing_rule = DatasetProcessRule(
  379. mode=tmp_processing_rule["mode"],
  380. rules=json.dumps(tmp_processing_rule["rules"])
  381. )
  382. # get splitter
  383. splitter = self._get_splitter(processing_rule, embedding_model_instance)
  384. # split to documents
  385. documents = self._split_to_documents_for_estimate(
  386. text_docs=documents,
  387. splitter=splitter,
  388. processing_rule=processing_rule
  389. )
  390. total_segments += len(documents)
  391. embedding_model_type_instance = None
  392. if embedding_model_instance:
  393. embedding_model_type_instance = embedding_model_instance.model_type_instance
  394. embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance)
  395. for document in documents:
  396. if len(preview_texts) < 5:
  397. preview_texts.append(document.page_content)
  398. if indexing_technique == 'high_quality' and embedding_model_type_instance:
  399. tokens += embedding_model_type_instance.get_num_tokens(
  400. model=embedding_model_instance.model,
  401. credentials=embedding_model_instance.credentials,
  402. texts=[document.page_content]
  403. )
  404. if doc_form and doc_form == 'qa_model':
  405. model_instance = self.model_manager.get_default_model_instance(
  406. tenant_id=tenant_id,
  407. model_type=ModelType.LLM
  408. )
  409. model_type_instance = model_instance.model_type_instance
  410. model_type_instance = cast(LargeLanguageModel, model_type_instance)
  411. if len(preview_texts) > 0:
  412. # qa model document
  413. response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0],
  414. doc_language)
  415. document_qa_list = self.format_split_text(response)
  416. price_info = model_type_instance.get_price(
  417. model=model_instance.model,
  418. credentials=model_instance.credentials,
  419. price_type=PriceType.INPUT,
  420. tokens=total_segments * 2000,
  421. )
  422. return {
  423. "total_segments": total_segments * 20,
  424. "tokens": total_segments * 2000,
  425. "total_price": '{:f}'.format(price_info.total_amount),
  426. "currency": price_info.currency,
  427. "qa_preview": document_qa_list,
  428. "preview": preview_texts
  429. }
  430. if embedding_model_instance:
  431. embedding_model_type_instance = embedding_model_instance.model_type_instance
  432. embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance)
  433. embedding_price_info = embedding_model_type_instance.get_price(
  434. model=embedding_model_instance.model,
  435. credentials=embedding_model_instance.credentials,
  436. price_type=PriceType.INPUT,
  437. tokens=tokens
  438. )
  439. total_price = '{:f}'.format(embedding_price_info.total_amount)
  440. currency = embedding_price_info.currency
  441. return {
  442. "total_segments": total_segments,
  443. "tokens": tokens,
  444. "total_price": total_price,
  445. "currency": currency,
  446. "preview": preview_texts
  447. }
  448. def _load_data(self, dataset_document: DatasetDocument, automatic: bool = False) -> List[Document]:
  449. # load file
  450. if dataset_document.data_source_type not in ["upload_file", "notion_import"]:
  451. return []
  452. data_source_info = dataset_document.data_source_info_dict
  453. text_docs = []
  454. if dataset_document.data_source_type == 'upload_file':
  455. if not data_source_info or 'upload_file_id' not in data_source_info:
  456. raise ValueError("no upload file found")
  457. file_detail = db.session.query(UploadFile). \
  458. filter(UploadFile.id == data_source_info['upload_file_id']). \
  459. one_or_none()
  460. if file_detail:
  461. text_docs = FileExtractor.load(file_detail, is_automatic=automatic)
  462. elif dataset_document.data_source_type == 'notion_import':
  463. loader = NotionLoader.from_document(dataset_document)
  464. text_docs = loader.load()
  465. # update document status to splitting
  466. self._update_document_index_status(
  467. document_id=dataset_document.id,
  468. after_indexing_status="splitting",
  469. extra_update_params={
  470. DatasetDocument.word_count: sum([len(text_doc.page_content) for text_doc in text_docs]),
  471. DatasetDocument.parsing_completed_at: datetime.datetime.utcnow()
  472. }
  473. )
  474. # replace doc id to document model id
  475. text_docs = cast(List[Document], text_docs)
  476. for text_doc in text_docs:
  477. # remove invalid symbol
  478. text_doc.page_content = self.filter_string(text_doc.page_content)
  479. text_doc.metadata['document_id'] = dataset_document.id
  480. text_doc.metadata['dataset_id'] = dataset_document.dataset_id
  481. return text_docs
  482. def filter_string(self, text):
  483. text = re.sub(r'<\|', '<', text)
  484. text = re.sub(r'\|>', '>', text)
  485. text = re.sub(r'[\x00-\x08\x0B\x0C\x0E-\x1F\x7F\xEF\xBF\xBE]', '', text)
  486. # Unicode U+FFFE
  487. text = re.sub(u'\uFFFE', '', text)
  488. return text
  489. def _get_splitter(self, processing_rule: DatasetProcessRule,
  490. embedding_model_instance: Optional[ModelInstance]) -> TextSplitter:
  491. """
  492. Get the NodeParser object according to the processing rule.
  493. """
  494. if processing_rule.mode == "custom":
  495. # The user-defined segmentation rule
  496. rules = json.loads(processing_rule.rules)
  497. segmentation = rules["segmentation"]
  498. if segmentation["max_tokens"] < 50 or segmentation["max_tokens"] > 1000:
  499. raise ValueError("Custom segment length should be between 50 and 1000.")
  500. separator = segmentation["separator"]
  501. if separator:
  502. separator = separator.replace('\\n', '\n')
  503. character_splitter = FixedRecursiveCharacterTextSplitter.from_encoder(
  504. chunk_size=segmentation["max_tokens"],
  505. chunk_overlap=segmentation.get('chunk_overlap', 0),
  506. fixed_separator=separator,
  507. separators=["\n\n", "。", ".", " ", ""],
  508. embedding_model_instance=embedding_model_instance
  509. )
  510. else:
  511. # Automatic segmentation
  512. character_splitter = EnhanceRecursiveCharacterTextSplitter.from_encoder(
  513. chunk_size=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['max_tokens'],
  514. chunk_overlap=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['chunk_overlap'],
  515. separators=["\n\n", "。", ".", " ", ""],
  516. embedding_model_instance=embedding_model_instance
  517. )
  518. return character_splitter
  519. def _step_split(self, text_docs: List[Document], splitter: TextSplitter,
  520. dataset: Dataset, dataset_document: DatasetDocument, processing_rule: DatasetProcessRule) \
  521. -> List[Document]:
  522. """
  523. Split the text documents into documents and save them to the document segment.
  524. """
  525. documents = self._split_to_documents(
  526. text_docs=text_docs,
  527. splitter=splitter,
  528. processing_rule=processing_rule,
  529. tenant_id=dataset.tenant_id,
  530. document_form=dataset_document.doc_form,
  531. document_language=dataset_document.doc_language
  532. )
  533. # save node to document segment
  534. doc_store = DatasetDocumentStore(
  535. dataset=dataset,
  536. user_id=dataset_document.created_by,
  537. document_id=dataset_document.id
  538. )
  539. # add document segments
  540. doc_store.add_documents(documents)
  541. # update document status to indexing
  542. cur_time = datetime.datetime.utcnow()
  543. self._update_document_index_status(
  544. document_id=dataset_document.id,
  545. after_indexing_status="indexing",
  546. extra_update_params={
  547. DatasetDocument.cleaning_completed_at: cur_time,
  548. DatasetDocument.splitting_completed_at: cur_time,
  549. }
  550. )
  551. # update segment status to indexing
  552. self._update_segments_by_document(
  553. dataset_document_id=dataset_document.id,
  554. update_params={
  555. DocumentSegment.status: "indexing",
  556. DocumentSegment.indexing_at: datetime.datetime.utcnow()
  557. }
  558. )
  559. return documents
  560. def _split_to_documents(self, text_docs: List[Document], splitter: TextSplitter,
  561. processing_rule: DatasetProcessRule, tenant_id: str,
  562. document_form: str, document_language: str) -> List[Document]:
  563. """
  564. Split the text documents into nodes.
  565. """
  566. all_documents = []
  567. all_qa_documents = []
  568. for text_doc in text_docs:
  569. # document clean
  570. document_text = self._document_clean(text_doc.page_content, processing_rule)
  571. text_doc.page_content = document_text
  572. # parse document to nodes
  573. documents = splitter.split_documents([text_doc])
  574. split_documents = []
  575. for document_node in documents:
  576. if document_node.page_content.strip():
  577. doc_id = str(uuid.uuid4())
  578. hash = helper.generate_text_hash(document_node.page_content)
  579. document_node.metadata['doc_id'] = doc_id
  580. document_node.metadata['doc_hash'] = hash
  581. # delete Spliter character
  582. page_content = document_node.page_content
  583. if page_content.startswith(".") or page_content.startswith("。"):
  584. page_content = page_content[1:]
  585. else:
  586. page_content = page_content
  587. document_node.page_content = page_content
  588. if document_node.page_content:
  589. split_documents.append(document_node)
  590. all_documents.extend(split_documents)
  591. # processing qa document
  592. if document_form == 'qa_model':
  593. for i in range(0, len(all_documents), 10):
  594. threads = []
  595. sub_documents = all_documents[i:i + 10]
  596. for doc in sub_documents:
  597. document_format_thread = threading.Thread(target=self.format_qa_document, kwargs={
  598. 'flask_app': current_app._get_current_object(),
  599. 'tenant_id': tenant_id, 'document_node': doc, 'all_qa_documents': all_qa_documents,
  600. 'document_language': document_language})
  601. threads.append(document_format_thread)
  602. document_format_thread.start()
  603. for thread in threads:
  604. thread.join()
  605. return all_qa_documents
  606. return all_documents
  607. def format_qa_document(self, flask_app: Flask, tenant_id: str, document_node, all_qa_documents, document_language):
  608. format_documents = []
  609. if document_node.page_content is None or not document_node.page_content.strip():
  610. return
  611. with flask_app.app_context():
  612. try:
  613. # qa model document
  614. response = LLMGenerator.generate_qa_document(tenant_id, document_node.page_content, document_language)
  615. document_qa_list = self.format_split_text(response)
  616. qa_documents = []
  617. for result in document_qa_list:
  618. qa_document = Document(page_content=result['question'], metadata=document_node.metadata.copy())
  619. doc_id = str(uuid.uuid4())
  620. hash = helper.generate_text_hash(result['question'])
  621. qa_document.metadata['answer'] = result['answer']
  622. qa_document.metadata['doc_id'] = doc_id
  623. qa_document.metadata['doc_hash'] = hash
  624. qa_documents.append(qa_document)
  625. format_documents.extend(qa_documents)
  626. except Exception as e:
  627. logging.exception(e)
  628. all_qa_documents.extend(format_documents)
  629. def _split_to_documents_for_estimate(self, text_docs: List[Document], splitter: TextSplitter,
  630. processing_rule: DatasetProcessRule) -> List[Document]:
  631. """
  632. Split the text documents into nodes.
  633. """
  634. all_documents = []
  635. for text_doc in text_docs:
  636. # document clean
  637. document_text = self._document_clean(text_doc.page_content, processing_rule)
  638. text_doc.page_content = document_text
  639. # parse document to nodes
  640. documents = splitter.split_documents([text_doc])
  641. split_documents = []
  642. for document in documents:
  643. if document.page_content is None or not document.page_content.strip():
  644. continue
  645. doc_id = str(uuid.uuid4())
  646. hash = helper.generate_text_hash(document.page_content)
  647. document.metadata['doc_id'] = doc_id
  648. document.metadata['doc_hash'] = hash
  649. split_documents.append(document)
  650. all_documents.extend(split_documents)
  651. return all_documents
  652. def _document_clean(self, text: str, processing_rule: DatasetProcessRule) -> str:
  653. """
  654. Clean the document text according to the processing rules.
  655. """
  656. if processing_rule.mode == "automatic":
  657. rules = DatasetProcessRule.AUTOMATIC_RULES
  658. else:
  659. rules = json.loads(processing_rule.rules) if processing_rule.rules else {}
  660. if 'pre_processing_rules' in rules:
  661. pre_processing_rules = rules["pre_processing_rules"]
  662. for pre_processing_rule in pre_processing_rules:
  663. if pre_processing_rule["id"] == "remove_extra_spaces" and pre_processing_rule["enabled"] is True:
  664. # Remove extra spaces
  665. pattern = r'\n{3,}'
  666. text = re.sub(pattern, '\n\n', text)
  667. pattern = r'[\t\f\r\x20\u00a0\u1680\u180e\u2000-\u200a\u202f\u205f\u3000]{2,}'
  668. text = re.sub(pattern, ' ', text)
  669. elif pre_processing_rule["id"] == "remove_urls_emails" and pre_processing_rule["enabled"] is True:
  670. # Remove email
  671. pattern = r'([a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+)'
  672. text = re.sub(pattern, '', text)
  673. # Remove URL
  674. pattern = r'https?://[^\s]+'
  675. text = re.sub(pattern, '', text)
  676. return text
  677. def format_split_text(self, text):
  678. regex = r"Q\d+:\s*(.*?)\s*A\d+:\s*([\s\S]*?)(?=Q\d+:|$)"
  679. matches = re.findall(regex, text, re.UNICODE)
  680. return [
  681. {
  682. "question": q,
  683. "answer": re.sub(r"\n\s*", "\n", a.strip())
  684. }
  685. for q, a in matches if q and a
  686. ]
  687. def _build_index(self, dataset: Dataset, dataset_document: DatasetDocument, documents: List[Document]) -> None:
  688. """
  689. Build the index for the document.
  690. """
  691. vector_index = IndexBuilder.get_index(dataset, 'high_quality')
  692. keyword_table_index = IndexBuilder.get_index(dataset, 'economy')
  693. embedding_model_instance = None
  694. if dataset.indexing_technique == 'high_quality':
  695. embedding_model_instance = self.model_manager.get_model_instance(
  696. tenant_id=dataset.tenant_id,
  697. provider=dataset.embedding_model_provider,
  698. model_type=ModelType.TEXT_EMBEDDING,
  699. model=dataset.embedding_model
  700. )
  701. # chunk nodes by chunk size
  702. indexing_start_at = time.perf_counter()
  703. tokens = 0
  704. chunk_size = 100
  705. embedding_model_type_instance = None
  706. if embedding_model_instance:
  707. embedding_model_type_instance = embedding_model_instance.model_type_instance
  708. embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance)
  709. for i in range(0, len(documents), chunk_size):
  710. # check document is paused
  711. self._check_document_paused_status(dataset_document.id)
  712. chunk_documents = documents[i:i + chunk_size]
  713. if dataset.indexing_technique == 'high_quality' or embedding_model_type_instance:
  714. tokens += sum(
  715. embedding_model_type_instance.get_num_tokens(
  716. embedding_model_instance.model,
  717. embedding_model_instance.credentials,
  718. [document.page_content]
  719. )
  720. for document in chunk_documents
  721. )
  722. # save vector index
  723. if vector_index:
  724. vector_index.add_texts(chunk_documents)
  725. # save keyword index
  726. keyword_table_index.add_texts(chunk_documents)
  727. document_ids = [document.metadata['doc_id'] for document in chunk_documents]
  728. db.session.query(DocumentSegment).filter(
  729. DocumentSegment.document_id == dataset_document.id,
  730. DocumentSegment.index_node_id.in_(document_ids),
  731. DocumentSegment.status == "indexing"
  732. ).update({
  733. DocumentSegment.status: "completed",
  734. DocumentSegment.enabled: True,
  735. DocumentSegment.completed_at: datetime.datetime.utcnow()
  736. })
  737. db.session.commit()
  738. indexing_end_at = time.perf_counter()
  739. # update document status to completed
  740. self._update_document_index_status(
  741. document_id=dataset_document.id,
  742. after_indexing_status="completed",
  743. extra_update_params={
  744. DatasetDocument.tokens: tokens,
  745. DatasetDocument.completed_at: datetime.datetime.utcnow(),
  746. DatasetDocument.indexing_latency: indexing_end_at - indexing_start_at,
  747. }
  748. )
  749. def _check_document_paused_status(self, document_id: str):
  750. indexing_cache_key = 'document_{}_is_paused'.format(document_id)
  751. result = redis_client.get(indexing_cache_key)
  752. if result:
  753. raise DocumentIsPausedException()
  754. def _update_document_index_status(self, document_id: str, after_indexing_status: str,
  755. extra_update_params: Optional[dict] = None) -> None:
  756. """
  757. Update the document indexing status.
  758. """
  759. count = DatasetDocument.query.filter_by(id=document_id, is_paused=True).count()
  760. if count > 0:
  761. raise DocumentIsPausedException()
  762. document = DatasetDocument.query.filter_by(id=document_id).first()
  763. if not document:
  764. raise DocumentIsDeletedPausedException()
  765. update_params = {
  766. DatasetDocument.indexing_status: after_indexing_status
  767. }
  768. if extra_update_params:
  769. update_params.update(extra_update_params)
  770. DatasetDocument.query.filter_by(id=document_id).update(update_params)
  771. db.session.commit()
  772. def _update_segments_by_document(self, dataset_document_id: str, update_params: dict) -> None:
  773. """
  774. Update the document segment by document id.
  775. """
  776. DocumentSegment.query.filter_by(document_id=dataset_document_id).update(update_params)
  777. db.session.commit()
  778. def batch_add_segments(self, segments: List[DocumentSegment], dataset: Dataset):
  779. """
  780. Batch add segments index processing
  781. """
  782. documents = []
  783. for segment in segments:
  784. document = Document(
  785. page_content=segment.content,
  786. metadata={
  787. "doc_id": segment.index_node_id,
  788. "doc_hash": segment.index_node_hash,
  789. "document_id": segment.document_id,
  790. "dataset_id": segment.dataset_id,
  791. }
  792. )
  793. documents.append(document)
  794. # save vector index
  795. index = IndexBuilder.get_index(dataset, 'high_quality')
  796. if index:
  797. index.add_texts(documents, duplicate_check=True)
  798. # save keyword index
  799. index = IndexBuilder.get_index(dataset, 'economy')
  800. if index:
  801. index.add_texts(documents)
  802. class DocumentIsPausedException(Exception):
  803. pass
  804. class DocumentIsDeletedPausedException(Exception):
  805. pass