123456789101112131415161718192021222324252627282930313233343536373839404142 |
- from flask import current_app
- from langchain.embeddings import OpenAIEmbeddings
- from core.embedding.cached_embedding import CacheEmbedding
- from core.index.keyword_table_index.keyword_table_index import KeywordTableIndex, KeywordTableConfig
- from core.index.vector_index.vector_index import VectorIndex
- from core.llm.llm_builder import LLMBuilder
- from models.dataset import Dataset
- class IndexBuilder:
- @classmethod
- def get_index(cls, dataset: Dataset, indexing_technique: str, ignore_high_quality_check: bool = False):
- if indexing_technique == "high_quality":
- if not ignore_high_quality_check and dataset.indexing_technique != 'high_quality':
- return None
- model_credentials = LLMBuilder.get_model_credentials(
- tenant_id=dataset.tenant_id,
- model_provider=LLMBuilder.get_default_provider(dataset.tenant_id, 'text-embedding-ada-002'),
- model_name='text-embedding-ada-002'
- )
- embeddings = CacheEmbedding(OpenAIEmbeddings(
- max_retries=1,
- **model_credentials
- ))
- return VectorIndex(
- dataset=dataset,
- config=current_app.config,
- embeddings=embeddings
- )
- elif indexing_technique == "economy":
- return KeywordTableIndex(
- dataset=dataset,
- config=KeywordTableConfig(
- max_keywords_per_chunk=10
- )
- )
- else:
- raise ValueError('Unknown indexing technique')
|