index.py 1.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142
  1. from flask import current_app
  2. from langchain.embeddings import OpenAIEmbeddings
  3. from core.embedding.cached_embedding import CacheEmbedding
  4. from core.index.keyword_table_index.keyword_table_index import KeywordTableIndex, KeywordTableConfig
  5. from core.index.vector_index.vector_index import VectorIndex
  6. from core.llm.llm_builder import LLMBuilder
  7. from models.dataset import Dataset
  8. class IndexBuilder:
  9. @classmethod
  10. def get_index(cls, dataset: Dataset, indexing_technique: str, ignore_high_quality_check: bool = False):
  11. if indexing_technique == "high_quality":
  12. if not ignore_high_quality_check and dataset.indexing_technique != 'high_quality':
  13. return None
  14. model_credentials = LLMBuilder.get_model_credentials(
  15. tenant_id=dataset.tenant_id,
  16. model_provider=LLMBuilder.get_default_provider(dataset.tenant_id, 'text-embedding-ada-002'),
  17. model_name='text-embedding-ada-002'
  18. )
  19. embeddings = CacheEmbedding(OpenAIEmbeddings(
  20. max_retries=1,
  21. **model_credentials
  22. ))
  23. return VectorIndex(
  24. dataset=dataset,
  25. config=current_app.config,
  26. embeddings=embeddings
  27. )
  28. elif indexing_technique == "economy":
  29. return KeywordTableIndex(
  30. dataset=dataset,
  31. config=KeywordTableConfig(
  32. max_keywords_per_chunk=10
  33. )
  34. )
  35. else:
  36. raise ValueError('Unknown indexing technique')