123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176 |
- import os
- from collections.abc import Generator
- import pytest
- from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
- from core.model_runtime.entities.message_entities import (
- AssistantPromptMessage,
- ImagePromptMessageContent,
- PromptMessageTool,
- SystemPromptMessage,
- TextPromptMessageContent,
- UserPromptMessage,
- )
- from core.model_runtime.entities.model_entities import AIModelEntity, ModelType
- from core.model_runtime.errors.validate import CredentialsValidateFailedError
- from core.model_runtime.model_providers.stepfun.llm.llm import StepfunLargeLanguageModel
- def test_validate_credentials():
- model = StepfunLargeLanguageModel()
- with pytest.raises(CredentialsValidateFailedError):
- model.validate_credentials(
- model='step-1-8k',
- credentials={
- 'api_key': 'invalid_key'
- }
- )
- model.validate_credentials(
- model='step-1-8k',
- credentials={
- 'api_key': os.environ.get('STEPFUN_API_KEY')
- }
- )
- def test_invoke_model():
- model = StepfunLargeLanguageModel()
- response = model.invoke(
- model='step-1-8k',
- credentials={
- 'api_key': os.environ.get('STEPFUN_API_KEY')
- },
- prompt_messages=[
- UserPromptMessage(
- content='Hello World!'
- )
- ],
- model_parameters={
- 'temperature': 0.9,
- 'top_p': 0.7
- },
- stop=['Hi'],
- stream=False,
- user="abc-123"
- )
- assert isinstance(response, LLMResult)
- assert len(response.message.content) > 0
- def test_invoke_stream_model():
- model = StepfunLargeLanguageModel()
- response = model.invoke(
- model='step-1-8k',
- credentials={
- 'api_key': os.environ.get('STEPFUN_API_KEY')
- },
- prompt_messages=[
- SystemPromptMessage(
- content='You are a helpful AI assistant.',
- ),
- UserPromptMessage(
- content='Hello World!'
- )
- ],
- model_parameters={
- 'temperature': 0.9,
- 'top_p': 0.7
- },
- stream=True,
- user="abc-123"
- )
- assert isinstance(response, Generator)
- for chunk in response:
- assert isinstance(chunk, LLMResultChunk)
- assert isinstance(chunk.delta, LLMResultChunkDelta)
- assert isinstance(chunk.delta.message, AssistantPromptMessage)
- assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True
- def test_get_customizable_model_schema():
- model = StepfunLargeLanguageModel()
- schema = model.get_customizable_model_schema(
- model='step-1-8k',
- credentials={
- 'api_key': os.environ.get('STEPFUN_API_KEY')
- }
- )
- assert isinstance(schema, AIModelEntity)
- def test_invoke_chat_model_with_tools():
- model = StepfunLargeLanguageModel()
- result = model.invoke(
- model='step-1-8k',
- credentials={
- 'api_key': os.environ.get('STEPFUN_API_KEY')
- },
- prompt_messages=[
- SystemPromptMessage(
- content='You are a helpful AI assistant.',
- ),
- UserPromptMessage(
- content="what's the weather today in Shanghai?",
- )
- ],
- model_parameters={
- 'temperature': 0.9,
- 'max_tokens': 100
- },
- tools=[
- PromptMessageTool(
- name='get_weather',
- description='Determine weather in my location',
- parameters={
- "type": "object",
- "properties": {
- "location": {
- "type": "string",
- "description": "The city and state e.g. San Francisco, CA"
- },
- "unit": {
- "type": "string",
- "enum": [
- "c",
- "f"
- ]
- }
- },
- "required": [
- "location"
- ]
- }
- ),
- PromptMessageTool(
- name='get_stock_price',
- description='Get the current stock price',
- parameters={
- "type": "object",
- "properties": {
- "symbol": {
- "type": "string",
- "description": "The stock symbol"
- }
- },
- "required": [
- "symbol"
- ]
- }
- )
- ],
- stream=False,
- user="abc-123"
- )
- assert isinstance(result, LLMResult)
- assert isinstance(result.message, AssistantPromptMessage)
- assert len(result.message.tool_calls) > 0
|