Masashi Tomooka 3b23d6764f fix: token count includes base64 string of input images (#5868) 9 месяцев назад
..
configs 4d105d7bd7 feat(*): Swtich to dify_config. (#6025) 9 месяцев назад
constants cddea83e65 6014 i18n add support for spanish (#6017) 9 месяцев назад
controllers 4d105d7bd7 feat(*): Swtich to dify_config. (#6025) 9 месяцев назад
core 3b23d6764f fix: token count includes base64 string of input images (#5868) 9 месяцев назад
docker cb09dbef66 feat: correctly delete applications using Celery workers (#5787) 9 месяцев назад
events cb09dbef66 feat: correctly delete applications using Celery workers (#5787) 9 месяцев назад
extensions 1d3e96ffa6 add support oracle oci object storage (#5616) 9 месяцев назад
fields 4c0a31d38b FR: #4048 - Add color customization to the chatbot (#4885) 10 месяцев назад
libs 00b4cc3cd4 feat: implement forgot password feature (#5534) 9 месяцев назад
migrations 79df8825c8 Revert "feat: knowledge admin role" (#6018) 9 месяцев назад
models 79df8825c8 Revert "feat: knowledge admin role" (#6018) 9 месяцев назад
schedule 6c4e6bf1d6 Feat/dify rag (#2528) 1 год назад
services 79df8825c8 Revert "feat: knowledge admin role" (#6018) 9 месяцев назад
tasks 00b4cc3cd4 feat: implement forgot password feature (#5534) 9 месяцев назад
templates 00b4cc3cd4 feat: implement forgot password feature (#5534) 9 месяцев назад
tests b217ee414f test(test_rerank): Remove duplicate test cases. (#6024) 9 месяцев назад
.dockerignore 27f0ae8416 build: support Poetry for depencencies tool in api's Dockerfile (#5105) 10 месяцев назад
.env.example 1d3e96ffa6 add support oracle oci object storage (#5616) 9 месяцев назад
Dockerfile 9b7c74a5d9 chore: skip pip upgrade preparation in api dockerfile (#5999) 9 месяцев назад
README.md 2d6624cf9e typo: Update README.md (#5987) 9 месяцев назад
app.py d7f75d17cc Chore/remove-unused-code (#5917) 9 месяцев назад
commands.py cb8feb732f refactor: Create a `dify_config` with Pydantic. (#5938) 9 месяцев назад
poetry.lock 71c50b7e20 feat: add Llama 3 and Mixtral model options to ddgo_ai.yaml (#5979) 9 месяцев назад
poetry.toml f62f71a81a build: initial support for poetry build tool (#4513) 10 месяцев назад
pyproject.toml 71c50b7e20 feat: add Llama 3 and Mixtral model options to ddgo_ai.yaml (#5979) 9 месяцев назад

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   docker compose -f docker-compose.middleware.yaml -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000...
  3. If you need to debug local async processing, please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh