Masashi Tomooka 3b23d6764f fix: token count includes base64 string of input images (#5868) 9 mēneši atpakaļ
..
configs 4d105d7bd7 feat(*): Swtich to dify_config. (#6025) 9 mēneši atpakaļ
constants cddea83e65 6014 i18n add support for spanish (#6017) 9 mēneši atpakaļ
controllers 4d105d7bd7 feat(*): Swtich to dify_config. (#6025) 9 mēneši atpakaļ
core 3b23d6764f fix: token count includes base64 string of input images (#5868) 9 mēneši atpakaļ
docker cb09dbef66 feat: correctly delete applications using Celery workers (#5787) 9 mēneši atpakaļ
events cb09dbef66 feat: correctly delete applications using Celery workers (#5787) 9 mēneši atpakaļ
extensions 1d3e96ffa6 add support oracle oci object storage (#5616) 9 mēneši atpakaļ
fields 4c0a31d38b FR: #4048 - Add color customization to the chatbot (#4885) 10 mēneši atpakaļ
libs 00b4cc3cd4 feat: implement forgot password feature (#5534) 9 mēneši atpakaļ
migrations 79df8825c8 Revert "feat: knowledge admin role" (#6018) 9 mēneši atpakaļ
models 79df8825c8 Revert "feat: knowledge admin role" (#6018) 9 mēneši atpakaļ
schedule 6c4e6bf1d6 Feat/dify rag (#2528) 1 gadu atpakaļ
services 79df8825c8 Revert "feat: knowledge admin role" (#6018) 9 mēneši atpakaļ
tasks 00b4cc3cd4 feat: implement forgot password feature (#5534) 9 mēneši atpakaļ
templates 00b4cc3cd4 feat: implement forgot password feature (#5534) 9 mēneši atpakaļ
tests b217ee414f test(test_rerank): Remove duplicate test cases. (#6024) 9 mēneši atpakaļ
.dockerignore 27f0ae8416 build: support Poetry for depencencies tool in api's Dockerfile (#5105) 10 mēneši atpakaļ
.env.example 1d3e96ffa6 add support oracle oci object storage (#5616) 9 mēneši atpakaļ
Dockerfile 9b7c74a5d9 chore: skip pip upgrade preparation in api dockerfile (#5999) 9 mēneši atpakaļ
README.md 2d6624cf9e typo: Update README.md (#5987) 9 mēneši atpakaļ
app.py d7f75d17cc Chore/remove-unused-code (#5917) 9 mēneši atpakaļ
commands.py cb8feb732f refactor: Create a `dify_config` with Pydantic. (#5938) 9 mēneši atpakaļ
poetry.lock 71c50b7e20 feat: add Llama 3 and Mixtral model options to ddgo_ai.yaml (#5979) 9 mēneši atpakaļ
poetry.toml f62f71a81a build: initial support for poetry build tool (#4513) 10 mēneši atpakaļ
pyproject.toml 71c50b7e20 feat: add Llama 3 and Mixtral model options to ddgo_ai.yaml (#5979) 9 mēneši atpakaļ

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   docker compose -f docker-compose.middleware.yaml -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000...
  3. If you need to debug local async processing, please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh