rerorero 3a423e8ce7 fix: visioin model always with low quality (#5253) hai 10 meses
..
.vscode f62f71a81a build: initial support for poetry build tool (#4513) hai 10 meses
constants 6ccde0452a feat: Added hindi translation i18n (#5240) hai 10 meses
controllers ba5f8afaa8 Feat/firecrawl data source (#5232) hai 10 meses
core 3a423e8ce7 fix: visioin model always with low quality (#5253) hai 10 meses
docker c32c177e15 improvement: introduce Super-Linter actions to check style for shell script, dockerfile and yaml files (#1966) hai 1 ano
events 0391282b5e fix: initialize site with customized icon and icon_background (#5227) hai 10 meses
extensions d7fbae286a add aws s3 iam check (#5174) hai 10 meses
fields 43c19007e0 fix: workspace member's last_active should be last_active_time, but not last_login_time (#4906) hai 10 meses
libs ba5f8afaa8 Feat/firecrawl data source (#5232) hai 10 meses
migrations ba5f8afaa8 Feat/firecrawl data source (#5232) hai 10 meses
models ba5f8afaa8 Feat/firecrawl data source (#5232) hai 10 meses
schedule 6c4e6bf1d6 Feat/dify rag (#2528) hai 1 ano
services ba5f8afaa8 Feat/firecrawl data source (#5232) hai 10 meses
tasks ba5f8afaa8 Feat/firecrawl data source (#5232) hai 10 meses
templates 3d92784bd4 fix: email template style (#1914) hai 1 ano
tests ba5f8afaa8 Feat/firecrawl data source (#5232) hai 10 meses
.dockerignore 220f7c81e9 build: fix .dockerignore file (#800) hai 1 ano
.env.example ba5f8afaa8 Feat/firecrawl data source (#5232) hai 10 meses
Dockerfile 55fc46c707 improvement: speed up dependency installation in docker image rebuilds by mounting cache layer (#3218) hai 1 ano
README.md 8da035aac6 Update README.md (#5228) hai 10 meses
app.py 8bca908f15 refactor: config file (#3852) hai 1 ano
commands.py 4080f7b8ad feat: support tencent vector db (#3568) hai 10 meses
config.py d098bdc59b version to 0.6.11 (#5224) hai 10 meses
poetry.lock 4080f7b8ad feat: support tencent vector db (#3568) hai 10 meses
poetry.toml f62f71a81a build: initial support for poetry build tool (#4513) hai 10 meses
pyproject.toml d098bdc59b version to 0.6.11 (#5224) hai 10 meses
requirements-dev.txt 23498883d4 chore: skip explicit installing jinja2 as testing dependency (#4845) hai 10 meses
requirements.txt 4080f7b8ad feat: support tencent vector db (#3568) hai 10 meses

README.md

Dify Backend API

Usage

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   docker-compose -f docker-compose.middleware.yaml -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

Using pip can be found below.

  1. Install dependencies
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000...
  3. If you need to debug local async processing, please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh

Usage with pip

[!NOTE]
In the next version, we will deprecate pip as the primary package management tool for dify api service, currently Poetry and pip coexist.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   docker-compose -f docker-compose.middleware.yaml -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
  1. Create environment.

If you use Anaconda, create a new environment and activate it

   conda create --name dify python=3.10
   conda activate dify
  1. Install dependencies
   pip install -r requirements.txt
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   flask db upgrade
  1. Start backend:

    flask run --host 0.0.0.0 --port=5001 --debug
    
    1. Setup your application by visiting http://localhost:5001/console/api/setup or other apis...
    2. If you need to debug local async processing, please start the worker service. bash celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment

    pip install -r requirements.txt -r requirements-dev.txt
    
    1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml bash dev/pytest/pytest_all_tests.sh