assistant_base_runner.py 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582
  1. import json
  2. import logging
  3. from datetime import datetime
  4. from mimetypes import guess_extension
  5. from typing import List, Optional, Tuple, Union, cast
  6. from core.app_runner.app_runner import AppRunner
  7. from core.application_queue_manager import ApplicationQueueManager
  8. from core.callback_handler.agent_tool_callback_handler import DifyAgentCallbackHandler
  9. from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
  10. from core.entities.application_entities import (AgentEntity, AgentToolEntity, ApplicationGenerateEntity,
  11. AppOrchestrationConfigEntity, InvokeFrom, ModelConfigEntity)
  12. from core.file.message_file_parser import FileTransferMethod
  13. from core.memory.token_buffer_memory import TokenBufferMemory
  14. from core.model_manager import ModelInstance
  15. from core.model_runtime.entities.llm_entities import LLMUsage
  16. from core.model_runtime.entities.message_entities import PromptMessage, PromptMessageTool
  17. from core.model_runtime.entities.model_entities import ModelFeature
  18. from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
  19. from core.model_runtime.utils.encoders import jsonable_encoder
  20. from core.tools.entities.tool_entities import (ToolInvokeMessage, ToolInvokeMessageBinary, ToolParameter,
  21. ToolRuntimeVariablePool)
  22. from core.tools.tool.dataset_retriever_tool import DatasetRetrieverTool
  23. from core.tools.tool.tool import Tool
  24. from core.tools.tool_file_manager import ToolFileManager
  25. from core.tools.tool_manager import ToolManager
  26. from extensions.ext_database import db
  27. from models.model import Message, MessageAgentThought, MessageFile
  28. from models.tools import ToolConversationVariables
  29. logger = logging.getLogger(__name__)
  30. class BaseAssistantApplicationRunner(AppRunner):
  31. def __init__(self, tenant_id: str,
  32. application_generate_entity: ApplicationGenerateEntity,
  33. app_orchestration_config: AppOrchestrationConfigEntity,
  34. model_config: ModelConfigEntity,
  35. config: AgentEntity,
  36. queue_manager: ApplicationQueueManager,
  37. message: Message,
  38. user_id: str,
  39. memory: Optional[TokenBufferMemory] = None,
  40. prompt_messages: Optional[List[PromptMessage]] = None,
  41. variables_pool: Optional[ToolRuntimeVariablePool] = None,
  42. db_variables: Optional[ToolConversationVariables] = None,
  43. model_instance: ModelInstance = None
  44. ) -> None:
  45. """
  46. Agent runner
  47. :param tenant_id: tenant id
  48. :param app_orchestration_config: app orchestration config
  49. :param model_config: model config
  50. :param config: dataset config
  51. :param queue_manager: queue manager
  52. :param message: message
  53. :param user_id: user id
  54. :param agent_llm_callback: agent llm callback
  55. :param callback: callback
  56. :param memory: memory
  57. """
  58. self.tenant_id = tenant_id
  59. self.application_generate_entity = application_generate_entity
  60. self.app_orchestration_config = app_orchestration_config
  61. self.model_config = model_config
  62. self.config = config
  63. self.queue_manager = queue_manager
  64. self.message = message
  65. self.user_id = user_id
  66. self.memory = memory
  67. self.history_prompt_messages = prompt_messages
  68. self.variables_pool = variables_pool
  69. self.db_variables_pool = db_variables
  70. self.model_instance = model_instance
  71. # init callback
  72. self.agent_callback = DifyAgentCallbackHandler()
  73. # init dataset tools
  74. hit_callback = DatasetIndexToolCallbackHandler(
  75. queue_manager=queue_manager,
  76. app_id=self.application_generate_entity.app_id,
  77. message_id=message.id,
  78. user_id=user_id,
  79. invoke_from=self.application_generate_entity.invoke_from,
  80. )
  81. self.dataset_tools = DatasetRetrieverTool.get_dataset_tools(
  82. tenant_id=tenant_id,
  83. dataset_ids=app_orchestration_config.dataset.dataset_ids if app_orchestration_config.dataset else [],
  84. retrieve_config=app_orchestration_config.dataset.retrieve_config if app_orchestration_config.dataset else None,
  85. return_resource=app_orchestration_config.show_retrieve_source,
  86. invoke_from=application_generate_entity.invoke_from,
  87. hit_callback=hit_callback
  88. )
  89. # get how many agent thoughts have been created
  90. self.agent_thought_count = db.session.query(MessageAgentThought).filter(
  91. MessageAgentThought.message_id == self.message.id,
  92. ).count()
  93. # check if model supports stream tool call
  94. llm_model = cast(LargeLanguageModel, model_instance.model_type_instance)
  95. model_schema = llm_model.get_model_schema(model_instance.model, model_instance.credentials)
  96. if model_schema and ModelFeature.STREAM_TOOL_CALL in (model_schema.features or []):
  97. self.stream_tool_call = True
  98. else:
  99. self.stream_tool_call = False
  100. def _repack_app_orchestration_config(self, app_orchestration_config: AppOrchestrationConfigEntity) -> AppOrchestrationConfigEntity:
  101. """
  102. Repack app orchestration config
  103. """
  104. if app_orchestration_config.prompt_template.simple_prompt_template is None:
  105. app_orchestration_config.prompt_template.simple_prompt_template = ''
  106. return app_orchestration_config
  107. def _convert_tool_response_to_str(self, tool_response: List[ToolInvokeMessage]) -> str:
  108. """
  109. Handle tool response
  110. """
  111. result = ''
  112. for response in tool_response:
  113. if response.type == ToolInvokeMessage.MessageType.TEXT:
  114. result += response.message
  115. elif response.type == ToolInvokeMessage.MessageType.LINK:
  116. result += f"result link: {response.message}. please tell user to check it."
  117. elif response.type == ToolInvokeMessage.MessageType.IMAGE_LINK or \
  118. response.type == ToolInvokeMessage.MessageType.IMAGE:
  119. result += f"image has been created and sent to user already, you should tell user to check it now."
  120. else:
  121. result += f"tool response: {response.message}."
  122. return result
  123. def _convert_tool_to_prompt_message_tool(self, tool: AgentToolEntity) -> Tuple[PromptMessageTool, Tool]:
  124. """
  125. convert tool to prompt message tool
  126. """
  127. tool_entity = ToolManager.get_tool_runtime(
  128. provider_type=tool.provider_type, provider_name=tool.provider_id, tool_name=tool.tool_name,
  129. tenant_id=self.application_generate_entity.tenant_id,
  130. agent_callback=self.agent_callback
  131. )
  132. tool_entity.load_variables(self.variables_pool)
  133. message_tool = PromptMessageTool(
  134. name=tool.tool_name,
  135. description=tool_entity.description.llm,
  136. parameters={
  137. "type": "object",
  138. "properties": {},
  139. "required": [],
  140. }
  141. )
  142. runtime_parameters = {}
  143. parameters = tool_entity.parameters or []
  144. user_parameters = tool_entity.get_runtime_parameters() or []
  145. # override parameters
  146. for parameter in user_parameters:
  147. # check if parameter in tool parameters
  148. found = False
  149. for tool_parameter in parameters:
  150. if tool_parameter.name == parameter.name:
  151. found = True
  152. break
  153. if found:
  154. # override parameter
  155. tool_parameter.type = parameter.type
  156. tool_parameter.form = parameter.form
  157. tool_parameter.required = parameter.required
  158. tool_parameter.default = parameter.default
  159. tool_parameter.options = parameter.options
  160. tool_parameter.llm_description = parameter.llm_description
  161. else:
  162. # add new parameter
  163. parameters.append(parameter)
  164. for parameter in parameters:
  165. parameter_type = 'string'
  166. enum = []
  167. if parameter.type == ToolParameter.ToolParameterType.STRING:
  168. parameter_type = 'string'
  169. elif parameter.type == ToolParameter.ToolParameterType.BOOLEAN:
  170. parameter_type = 'boolean'
  171. elif parameter.type == ToolParameter.ToolParameterType.NUMBER:
  172. parameter_type = 'number'
  173. elif parameter.type == ToolParameter.ToolParameterType.SELECT:
  174. for option in parameter.options:
  175. enum.append(option.value)
  176. parameter_type = 'string'
  177. else:
  178. raise ValueError(f"parameter type {parameter.type} is not supported")
  179. if parameter.form == ToolParameter.ToolParameterForm.FORM:
  180. # get tool parameter from form
  181. tool_parameter_config = tool.tool_parameters.get(parameter.name)
  182. if not tool_parameter_config:
  183. # get default value
  184. tool_parameter_config = parameter.default
  185. if not tool_parameter_config and parameter.required:
  186. raise ValueError(f"tool parameter {parameter.name} not found in tool config")
  187. if parameter.type == ToolParameter.ToolParameterType.SELECT:
  188. # check if tool_parameter_config in options
  189. options = list(map(lambda x: x.value, parameter.options))
  190. if tool_parameter_config not in options:
  191. raise ValueError(f"tool parameter {parameter.name} value {tool_parameter_config} not in options {options}")
  192. # convert tool parameter config to correct type
  193. try:
  194. if parameter.type == ToolParameter.ToolParameterType.NUMBER:
  195. # check if tool parameter is integer
  196. if isinstance(tool_parameter_config, int):
  197. tool_parameter_config = tool_parameter_config
  198. elif isinstance(tool_parameter_config, float):
  199. tool_parameter_config = tool_parameter_config
  200. elif isinstance(tool_parameter_config, str):
  201. if '.' in tool_parameter_config:
  202. tool_parameter_config = float(tool_parameter_config)
  203. else:
  204. tool_parameter_config = int(tool_parameter_config)
  205. elif parameter.type == ToolParameter.ToolParameterType.BOOLEAN:
  206. tool_parameter_config = bool(tool_parameter_config)
  207. elif parameter.type not in [ToolParameter.ToolParameterType.SELECT, ToolParameter.ToolParameterType.STRING]:
  208. tool_parameter_config = str(tool_parameter_config)
  209. elif parameter.type == ToolParameter.ToolParameterType:
  210. tool_parameter_config = str(tool_parameter_config)
  211. except Exception as e:
  212. raise ValueError(f"tool parameter {parameter.name} value {tool_parameter_config} is not correct type")
  213. # save tool parameter to tool entity memory
  214. runtime_parameters[parameter.name] = tool_parameter_config
  215. elif parameter.form == ToolParameter.ToolParameterForm.LLM:
  216. message_tool.parameters['properties'][parameter.name] = {
  217. "type": parameter_type,
  218. "description": parameter.llm_description or '',
  219. }
  220. if len(enum) > 0:
  221. message_tool.parameters['properties'][parameter.name]['enum'] = enum
  222. if parameter.required:
  223. message_tool.parameters['required'].append(parameter.name)
  224. tool_entity.runtime.runtime_parameters.update(runtime_parameters)
  225. return message_tool, tool_entity
  226. def _convert_dataset_retriever_tool_to_prompt_message_tool(self, tool: DatasetRetrieverTool) -> PromptMessageTool:
  227. """
  228. convert dataset retriever tool to prompt message tool
  229. """
  230. prompt_tool = PromptMessageTool(
  231. name=tool.identity.name,
  232. description=tool.description.llm,
  233. parameters={
  234. "type": "object",
  235. "properties": {},
  236. "required": [],
  237. }
  238. )
  239. for parameter in tool.get_runtime_parameters():
  240. parameter_type = 'string'
  241. prompt_tool.parameters['properties'][parameter.name] = {
  242. "type": parameter_type,
  243. "description": parameter.llm_description or '',
  244. }
  245. if parameter.required:
  246. if parameter.name not in prompt_tool.parameters['required']:
  247. prompt_tool.parameters['required'].append(parameter.name)
  248. return prompt_tool
  249. def update_prompt_message_tool(self, tool: Tool, prompt_tool: PromptMessageTool) -> PromptMessageTool:
  250. """
  251. update prompt message tool
  252. """
  253. # try to get tool runtime parameters
  254. tool_runtime_parameters = tool.get_runtime_parameters() or []
  255. for parameter in tool_runtime_parameters:
  256. parameter_type = 'string'
  257. enum = []
  258. if parameter.type == ToolParameter.ToolParameterType.STRING:
  259. parameter_type = 'string'
  260. elif parameter.type == ToolParameter.ToolParameterType.BOOLEAN:
  261. parameter_type = 'boolean'
  262. elif parameter.type == ToolParameter.ToolParameterType.NUMBER:
  263. parameter_type = 'number'
  264. elif parameter.type == ToolParameter.ToolParameterType.SELECT:
  265. for option in parameter.options:
  266. enum.append(option.value)
  267. parameter_type = 'string'
  268. else:
  269. raise ValueError(f"parameter type {parameter.type} is not supported")
  270. if parameter.form == ToolParameter.ToolParameterForm.LLM:
  271. prompt_tool.parameters['properties'][parameter.name] = {
  272. "type": parameter_type,
  273. "description": parameter.llm_description or '',
  274. }
  275. if len(enum) > 0:
  276. prompt_tool.parameters['properties'][parameter.name]['enum'] = enum
  277. if parameter.required:
  278. if parameter.name not in prompt_tool.parameters['required']:
  279. prompt_tool.parameters['required'].append(parameter.name)
  280. return prompt_tool
  281. def extract_tool_response_binary(self, tool_response: List[ToolInvokeMessage]) -> List[ToolInvokeMessageBinary]:
  282. """
  283. Extract tool response binary
  284. """
  285. result = []
  286. for response in tool_response:
  287. if response.type == ToolInvokeMessage.MessageType.IMAGE_LINK or \
  288. response.type == ToolInvokeMessage.MessageType.IMAGE:
  289. result.append(ToolInvokeMessageBinary(
  290. mimetype=response.meta.get('mime_type', 'octet/stream'),
  291. url=response.message,
  292. save_as=response.save_as,
  293. ))
  294. elif response.type == ToolInvokeMessage.MessageType.BLOB:
  295. result.append(ToolInvokeMessageBinary(
  296. mimetype=response.meta.get('mime_type', 'octet/stream'),
  297. url=response.message,
  298. save_as=response.save_as,
  299. ))
  300. elif response.type == ToolInvokeMessage.MessageType.LINK:
  301. # check if there is a mime type in meta
  302. if response.meta and 'mime_type' in response.meta:
  303. result.append(ToolInvokeMessageBinary(
  304. mimetype=response.meta.get('mime_type', 'octet/stream') if response.meta else 'octet/stream',
  305. url=response.message,
  306. save_as=response.save_as,
  307. ))
  308. return result
  309. def create_message_files(self, messages: List[ToolInvokeMessageBinary]) -> List[Tuple[MessageFile, bool]]:
  310. """
  311. Create message file
  312. :param messages: messages
  313. :return: message files, should save as variable
  314. """
  315. result = []
  316. for message in messages:
  317. file_type = 'bin'
  318. if 'image' in message.mimetype:
  319. file_type = 'image'
  320. elif 'video' in message.mimetype:
  321. file_type = 'video'
  322. elif 'audio' in message.mimetype:
  323. file_type = 'audio'
  324. elif 'text' in message.mimetype:
  325. file_type = 'text'
  326. elif 'pdf' in message.mimetype:
  327. file_type = 'pdf'
  328. elif 'zip' in message.mimetype:
  329. file_type = 'archive'
  330. # ...
  331. invoke_from = self.application_generate_entity.invoke_from
  332. message_file = MessageFile(
  333. message_id=self.message.id,
  334. type=file_type,
  335. transfer_method=FileTransferMethod.TOOL_FILE.value,
  336. belongs_to='assistant',
  337. url=message.url,
  338. upload_file_id=None,
  339. created_by_role=('account'if invoke_from in [InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER] else 'end_user'),
  340. created_by=self.user_id,
  341. )
  342. db.session.add(message_file)
  343. result.append((
  344. message_file,
  345. message.save_as
  346. ))
  347. db.session.commit()
  348. return result
  349. def create_agent_thought(self, message_id: str, message: str,
  350. tool_name: str, tool_input: str, messages_ids: List[str]
  351. ) -> MessageAgentThought:
  352. """
  353. Create agent thought
  354. """
  355. thought = MessageAgentThought(
  356. message_id=message_id,
  357. message_chain_id=None,
  358. thought='',
  359. tool=tool_name,
  360. tool_labels_str='{}',
  361. tool_input=tool_input,
  362. message=message,
  363. message_token=0,
  364. message_unit_price=0,
  365. message_price_unit=0,
  366. message_files=json.dumps(messages_ids) if messages_ids else '',
  367. answer='',
  368. observation='',
  369. answer_token=0,
  370. answer_unit_price=0,
  371. answer_price_unit=0,
  372. tokens=0,
  373. total_price=0,
  374. position=self.agent_thought_count + 1,
  375. currency='USD',
  376. latency=0,
  377. created_by_role='account',
  378. created_by=self.user_id,
  379. )
  380. db.session.add(thought)
  381. db.session.commit()
  382. self.agent_thought_count += 1
  383. return thought
  384. def save_agent_thought(self,
  385. agent_thought: MessageAgentThought,
  386. tool_name: str,
  387. tool_input: Union[str, dict],
  388. thought: str,
  389. observation: str,
  390. answer: str,
  391. messages_ids: List[str],
  392. llm_usage: LLMUsage = None) -> MessageAgentThought:
  393. """
  394. Save agent thought
  395. """
  396. if thought is not None:
  397. agent_thought.thought = thought
  398. if tool_name is not None:
  399. agent_thought.tool = tool_name
  400. if tool_input is not None:
  401. if isinstance(tool_input, dict):
  402. try:
  403. tool_input = json.dumps(tool_input, ensure_ascii=False)
  404. except Exception as e:
  405. tool_input = json.dumps(tool_input)
  406. agent_thought.tool_input = tool_input
  407. if observation is not None:
  408. agent_thought.observation = observation
  409. if answer is not None:
  410. agent_thought.answer = answer
  411. if messages_ids is not None and len(messages_ids) > 0:
  412. agent_thought.message_files = json.dumps(messages_ids)
  413. if llm_usage:
  414. agent_thought.message_token = llm_usage.prompt_tokens
  415. agent_thought.message_price_unit = llm_usage.prompt_price_unit
  416. agent_thought.message_unit_price = llm_usage.prompt_unit_price
  417. agent_thought.answer_token = llm_usage.completion_tokens
  418. agent_thought.answer_price_unit = llm_usage.completion_price_unit
  419. agent_thought.answer_unit_price = llm_usage.completion_unit_price
  420. agent_thought.tokens = llm_usage.total_tokens
  421. agent_thought.total_price = llm_usage.total_price
  422. # check if tool labels is not empty
  423. labels = agent_thought.tool_labels or {}
  424. tools = agent_thought.tool.split(';') if agent_thought.tool else []
  425. for tool in tools:
  426. if not tool:
  427. continue
  428. if tool not in labels:
  429. tool_label = ToolManager.get_tool_label(tool)
  430. if tool_label:
  431. labels[tool] = tool_label.to_dict()
  432. else:
  433. labels[tool] = {'en_US': tool, 'zh_Hans': tool}
  434. agent_thought.tool_labels_str = json.dumps(labels)
  435. db.session.commit()
  436. def get_history_prompt_messages(self) -> List[PromptMessage]:
  437. """
  438. Get history prompt messages
  439. """
  440. if self.history_prompt_messages is None:
  441. self.history_prompt_messages = db.session.query(PromptMessage).filter(
  442. PromptMessage.message_id == self.message.id,
  443. ).order_by(PromptMessage.position.asc()).all()
  444. return self.history_prompt_messages
  445. def transform_tool_invoke_messages(self, messages: List[ToolInvokeMessage]) -> List[ToolInvokeMessage]:
  446. """
  447. Transform tool message into agent thought
  448. """
  449. result = []
  450. for message in messages:
  451. if message.type == ToolInvokeMessage.MessageType.TEXT:
  452. result.append(message)
  453. elif message.type == ToolInvokeMessage.MessageType.LINK:
  454. result.append(message)
  455. elif message.type == ToolInvokeMessage.MessageType.IMAGE:
  456. # try to download image
  457. try:
  458. file = ToolFileManager.create_file_by_url(user_id=self.user_id, tenant_id=self.tenant_id,
  459. conversation_id=self.message.conversation_id,
  460. file_url=message.message)
  461. url = f'/files/tools/{file.id}{guess_extension(file.mimetype) or ".png"}'
  462. result.append(ToolInvokeMessage(
  463. type=ToolInvokeMessage.MessageType.IMAGE_LINK,
  464. message=url,
  465. save_as=message.save_as,
  466. meta=message.meta.copy() if message.meta is not None else {},
  467. ))
  468. except Exception as e:
  469. logger.exception(e)
  470. result.append(ToolInvokeMessage(
  471. type=ToolInvokeMessage.MessageType.TEXT,
  472. message=f"Failed to download image: {message.message}, you can try to download it yourself.",
  473. meta=message.meta.copy() if message.meta is not None else {},
  474. save_as=message.save_as,
  475. ))
  476. elif message.type == ToolInvokeMessage.MessageType.BLOB:
  477. # get mime type and save blob to storage
  478. mimetype = message.meta.get('mime_type', 'octet/stream')
  479. # if message is str, encode it to bytes
  480. if isinstance(message.message, str):
  481. message.message = message.message.encode('utf-8')
  482. file = ToolFileManager.create_file_by_raw(user_id=self.user_id, tenant_id=self.tenant_id,
  483. conversation_id=self.message.conversation_id,
  484. file_binary=message.message,
  485. mimetype=mimetype)
  486. url = f'/files/tools/{file.id}{guess_extension(file.mimetype) or ".bin"}'
  487. # check if file is image
  488. if 'image' in mimetype:
  489. result.append(ToolInvokeMessage(
  490. type=ToolInvokeMessage.MessageType.IMAGE_LINK,
  491. message=url,
  492. save_as=message.save_as,
  493. meta=message.meta.copy() if message.meta is not None else {},
  494. ))
  495. else:
  496. result.append(ToolInvokeMessage(
  497. type=ToolInvokeMessage.MessageType.LINK,
  498. message=url,
  499. save_as=message.save_as,
  500. meta=message.meta.copy() if message.meta is not None else {},
  501. ))
  502. else:
  503. result.append(message)
  504. return result
  505. def update_db_variables(self, tool_variables: ToolRuntimeVariablePool, db_variables: ToolConversationVariables):
  506. """
  507. convert tool variables to db variables
  508. """
  509. db_variables.updated_at = datetime.utcnow()
  510. db_variables.variables_str = json.dumps(jsonable_encoder(tool_variables.pool))
  511. db.session.commit()