dataset.py 5.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163
  1. from flask import request
  2. from flask_restful import marshal, reqparse
  3. from werkzeug.exceptions import NotFound
  4. import services.dataset_service
  5. from controllers.service_api import api
  6. from controllers.service_api.dataset.error import DatasetInUseError, DatasetNameDuplicateError
  7. from controllers.service_api.wraps import DatasetApiResource
  8. from core.model_runtime.entities.model_entities import ModelType
  9. from core.provider_manager import ProviderManager
  10. from fields.dataset_fields import dataset_detail_fields
  11. from libs.login import current_user
  12. from models.dataset import Dataset, DatasetPermissionEnum
  13. from services.dataset_service import DatasetService
  14. def _validate_name(name):
  15. if not name or len(name) < 1 or len(name) > 40:
  16. raise ValueError("Name must be between 1 to 40 characters.")
  17. return name
  18. class DatasetListApi(DatasetApiResource):
  19. """Resource for datasets."""
  20. def get(self, tenant_id):
  21. """Resource for getting datasets."""
  22. page = request.args.get("page", default=1, type=int)
  23. limit = request.args.get("limit", default=20, type=int)
  24. # provider = request.args.get("provider", default="vendor")
  25. search = request.args.get("keyword", default=None, type=str)
  26. tag_ids = request.args.getlist("tag_ids")
  27. datasets, total = DatasetService.get_datasets(page, limit, tenant_id, current_user, search, tag_ids)
  28. # check embedding setting
  29. provider_manager = ProviderManager()
  30. configurations = provider_manager.get_configurations(tenant_id=current_user.current_tenant_id)
  31. embedding_models = configurations.get_models(model_type=ModelType.TEXT_EMBEDDING, only_active=True)
  32. model_names = []
  33. for embedding_model in embedding_models:
  34. model_names.append(f"{embedding_model.model}:{embedding_model.provider.provider}")
  35. data = marshal(datasets, dataset_detail_fields)
  36. for item in data:
  37. if item["indexing_technique"] == "high_quality":
  38. item_model = f"{item['embedding_model']}:{item['embedding_model_provider']}"
  39. if item_model in model_names:
  40. item["embedding_available"] = True
  41. else:
  42. item["embedding_available"] = False
  43. else:
  44. item["embedding_available"] = True
  45. response = {"data": data, "has_more": len(datasets) == limit, "limit": limit, "total": total, "page": page}
  46. return response, 200
  47. def post(self, tenant_id):
  48. """Resource for creating datasets."""
  49. parser = reqparse.RequestParser()
  50. parser.add_argument(
  51. "name",
  52. nullable=False,
  53. required=True,
  54. help="type is required. Name must be between 1 to 40 characters.",
  55. type=_validate_name,
  56. )
  57. parser.add_argument(
  58. "description",
  59. type=str,
  60. nullable=True,
  61. required=False,
  62. default="",
  63. )
  64. parser.add_argument(
  65. "indexing_technique",
  66. type=str,
  67. location="json",
  68. choices=Dataset.INDEXING_TECHNIQUE_LIST,
  69. help="Invalid indexing technique.",
  70. )
  71. parser.add_argument(
  72. "permission",
  73. type=str,
  74. location="json",
  75. choices=(DatasetPermissionEnum.ONLY_ME, DatasetPermissionEnum.ALL_TEAM, DatasetPermissionEnum.PARTIAL_TEAM),
  76. help="Invalid permission.",
  77. required=False,
  78. nullable=False,
  79. )
  80. parser.add_argument(
  81. "external_knowledge_api_id",
  82. type=str,
  83. nullable=True,
  84. required=False,
  85. default="_validate_name",
  86. )
  87. parser.add_argument(
  88. "provider",
  89. type=str,
  90. nullable=True,
  91. required=False,
  92. default="vendor",
  93. )
  94. parser.add_argument(
  95. "external_knowledge_id",
  96. type=str,
  97. nullable=True,
  98. required=False,
  99. )
  100. args = parser.parse_args()
  101. try:
  102. dataset = DatasetService.create_empty_dataset(
  103. tenant_id=tenant_id,
  104. name=args["name"],
  105. description=args["description"],
  106. indexing_technique=args["indexing_technique"],
  107. account=current_user,
  108. permission=args["permission"],
  109. provider=args["provider"],
  110. external_knowledge_api_id=args["external_knowledge_api_id"],
  111. external_knowledge_id=args["external_knowledge_id"],
  112. )
  113. except services.errors.dataset.DatasetNameDuplicateError:
  114. raise DatasetNameDuplicateError()
  115. return marshal(dataset, dataset_detail_fields), 200
  116. class DatasetApi(DatasetApiResource):
  117. """Resource for dataset."""
  118. def delete(self, _, dataset_id):
  119. """
  120. Deletes a dataset given its ID.
  121. Args:
  122. dataset_id (UUID): The ID of the dataset to be deleted.
  123. Returns:
  124. dict: A dictionary with a key 'result' and a value 'success'
  125. if the dataset was successfully deleted. Omitted in HTTP response.
  126. int: HTTP status code 204 indicating that the operation was successful.
  127. Raises:
  128. NotFound: If the dataset with the given ID does not exist.
  129. """
  130. dataset_id_str = str(dataset_id)
  131. try:
  132. if DatasetService.delete_dataset(dataset_id_str, current_user):
  133. return {"result": "success"}, 204
  134. else:
  135. raise NotFound("Dataset not found.")
  136. except services.errors.dataset.DatasetInUseError:
  137. raise DatasetInUseError()
  138. api.add_resource(DatasetListApi, "/datasets")
  139. api.add_resource(DatasetApi, "/datasets/<uuid:dataset_id>")