index.py 1.5 KB

1234567891011121314151617181920212223242526272829303132333435363738394041
  1. from flask import current_app
  2. from langchain.embeddings import OpenAIEmbeddings
  3. from core.embedding.cached_embedding import CacheEmbedding
  4. from core.index.keyword_table_index.keyword_table_index import KeywordTableIndex, KeywordTableConfig
  5. from core.index.vector_index.vector_index import VectorIndex
  6. from core.llm.llm_builder import LLMBuilder
  7. from models.dataset import Dataset
  8. class IndexBuilder:
  9. @classmethod
  10. def get_index(cls, dataset: Dataset, indexing_technique: str, ignore_high_quality_check: bool = False):
  11. if indexing_technique == "high_quality":
  12. if not ignore_high_quality_check and dataset.indexing_technique != 'high_quality':
  13. return None
  14. model_credentials = LLMBuilder.get_model_credentials(
  15. tenant_id=dataset.tenant_id,
  16. model_provider=LLMBuilder.get_default_provider(dataset.tenant_id),
  17. model_name='text-embedding-ada-002'
  18. )
  19. embeddings = CacheEmbedding(OpenAIEmbeddings(
  20. **model_credentials
  21. ))
  22. return VectorIndex(
  23. dataset=dataset,
  24. config=current_app.config,
  25. embeddings=embeddings
  26. )
  27. elif indexing_technique == "economy":
  28. return KeywordTableIndex(
  29. dataset=dataset,
  30. config=KeywordTableConfig(
  31. max_keywords_per_chunk=10
  32. )
  33. )
  34. else:
  35. raise ValueError('Unknown indexing technique')