123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403 |
- from flask import request
- from flask_login import current_user # type: ignore
- from flask_restful import marshal, reqparse # type: ignore
- from werkzeug.exceptions import NotFound
- from controllers.service_api import api
- from controllers.service_api.app.error import ProviderNotInitializeError
- from controllers.service_api.wraps import (
- DatasetApiResource,
- cloud_edition_billing_knowledge_limit_check,
- cloud_edition_billing_resource_check,
- )
- from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
- from core.model_manager import ModelManager
- from core.model_runtime.entities.model_entities import ModelType
- from extensions.ext_database import db
- from fields.segment_fields import child_chunk_fields, segment_fields
- from models.dataset import Dataset
- from services.dataset_service import DatasetService, DocumentService, SegmentService
- from services.entities.knowledge_entities.knowledge_entities import SegmentUpdateArgs
- from services.errors.chunk import (
- ChildChunkDeleteIndexError,
- ChildChunkIndexingError,
- )
- from services.errors.chunk import (
- ChildChunkDeleteIndexError as ChildChunkDeleteIndexServiceError,
- )
- from services.errors.chunk import (
- ChildChunkIndexingError as ChildChunkIndexingServiceError,
- )
- class SegmentApi(DatasetApiResource):
- """Resource for segments."""
- @cloud_edition_billing_resource_check("vector_space", "dataset")
- @cloud_edition_billing_knowledge_limit_check("add_segment", "dataset")
- def post(self, tenant_id, dataset_id, document_id):
- """Create single segment."""
- # check dataset
- dataset_id = str(dataset_id)
- tenant_id = str(tenant_id)
- dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
- if not dataset:
- raise NotFound("Dataset not found.")
- # check document
- document_id = str(document_id)
- document = DocumentService.get_document(dataset.id, document_id)
- if not document:
- raise NotFound("Document not found.")
- if document.indexing_status != "completed":
- raise NotFound("Document is not completed.")
- if not document.enabled:
- raise NotFound("Document is disabled.")
- # check embedding model setting
- if dataset.indexing_technique == "high_quality":
- try:
- model_manager = ModelManager()
- model_manager.get_model_instance(
- tenant_id=current_user.current_tenant_id,
- provider=dataset.embedding_model_provider,
- model_type=ModelType.TEXT_EMBEDDING,
- model=dataset.embedding_model,
- )
- except LLMBadRequestError:
- raise ProviderNotInitializeError(
- "No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
- )
- except ProviderTokenNotInitError as ex:
- raise ProviderNotInitializeError(ex.description)
- # validate args
- parser = reqparse.RequestParser()
- parser.add_argument("segments", type=list, required=False, nullable=True, location="json")
- args = parser.parse_args()
- if args["segments"] is not None:
- for args_item in args["segments"]:
- SegmentService.segment_create_args_validate(args_item, document)
- segments = SegmentService.multi_create_segment(args["segments"], document, dataset)
- return {"data": marshal(segments, segment_fields), "doc_form": document.doc_form}, 200
- else:
- return {"error": "Segments is required"}, 400
- def get(self, tenant_id, dataset_id, document_id):
- """Get segments."""
- # check dataset
- dataset_id = str(dataset_id)
- tenant_id = str(tenant_id)
- page = request.args.get("page", default=1, type=int)
- limit = request.args.get("limit", default=20, type=int)
- dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
- if not dataset:
- raise NotFound("Dataset not found.")
- # check document
- document_id = str(document_id)
- document = DocumentService.get_document(dataset.id, document_id)
- if not document:
- raise NotFound("Document not found.")
- # check embedding model setting
- if dataset.indexing_technique == "high_quality":
- try:
- model_manager = ModelManager()
- model_manager.get_model_instance(
- tenant_id=current_user.current_tenant_id,
- provider=dataset.embedding_model_provider,
- model_type=ModelType.TEXT_EMBEDDING,
- model=dataset.embedding_model,
- )
- except LLMBadRequestError:
- raise ProviderNotInitializeError(
- "No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
- )
- except ProviderTokenNotInitError as ex:
- raise ProviderNotInitializeError(ex.description)
- parser = reqparse.RequestParser()
- parser.add_argument("status", type=str, action="append", default=[], location="args")
- parser.add_argument("keyword", type=str, default=None, location="args")
- args = parser.parse_args()
- status_list = args["status"]
- keyword = args["keyword"]
- segments, total = SegmentService.get_segments(
- document_id=document_id,
- tenant_id=current_user.current_tenant_id,
- status_list=args["status"],
- keyword=args["keyword"],
- )
- response = {
- "data": marshal(segments, segment_fields),
- "doc_form": document.doc_form,
- "total": total,
- "has_more": len(segments) == limit,
- "limit": limit,
- "page": page,
- }
- return response, 200
- class DatasetSegmentApi(DatasetApiResource):
- def delete(self, tenant_id, dataset_id, document_id, segment_id):
- # check dataset
- dataset_id = str(dataset_id)
- tenant_id = str(tenant_id)
- dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
- if not dataset:
- raise NotFound("Dataset not found.")
- # check user's model setting
- DatasetService.check_dataset_model_setting(dataset)
- # check document
- document_id = str(document_id)
- document = DocumentService.get_document(dataset_id, document_id)
- if not document:
- raise NotFound("Document not found.")
- # check segment
- segment_id = str(segment_id)
- segment = SegmentService.get_segment_by_id(segment_id=segment_id, tenant_id=current_user.current_tenant_id)
- if not segment:
- raise NotFound("Segment not found.")
- SegmentService.delete_segment(segment, document, dataset)
- return {"result": "success"}, 200
- @cloud_edition_billing_resource_check("vector_space", "dataset")
- def post(self, tenant_id, dataset_id, document_id, segment_id):
- # check dataset
- dataset_id = str(dataset_id)
- tenant_id = str(tenant_id)
- dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
- if not dataset:
- raise NotFound("Dataset not found.")
- # check user's model setting
- DatasetService.check_dataset_model_setting(dataset)
- # check document
- document_id = str(document_id)
- document = DocumentService.get_document(dataset_id, document_id)
- if not document:
- raise NotFound("Document not found.")
- if dataset.indexing_technique == "high_quality":
- # check embedding model setting
- try:
- model_manager = ModelManager()
- model_manager.get_model_instance(
- tenant_id=current_user.current_tenant_id,
- provider=dataset.embedding_model_provider,
- model_type=ModelType.TEXT_EMBEDDING,
- model=dataset.embedding_model,
- )
- except LLMBadRequestError:
- raise ProviderNotInitializeError(
- "No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
- )
- except ProviderTokenNotInitError as ex:
- raise ProviderNotInitializeError(ex.description)
- # check segment
- segment_id = str(segment_id)
- segment = SegmentService.get_segment_by_id(segment_id=segment_id, tenant_id=current_user.current_tenant_id)
- if not segment:
- raise NotFound("Segment not found.")
- # validate args
- parser = reqparse.RequestParser()
- parser.add_argument("segment", type=dict, required=False, nullable=True, location="json")
- args = parser.parse_args()
- updated_segment = SegmentService.update_segment(
- SegmentUpdateArgs(**args["segment"]), segment, document, dataset
- )
- return {"data": marshal(updated_segment, segment_fields), "doc_form": document.doc_form}, 200
- class ChildChunkApi(DatasetApiResource):
- """Resource for child chunks."""
- @cloud_edition_billing_resource_check("vector_space", "dataset")
- @cloud_edition_billing_knowledge_limit_check("add_segment", "dataset")
- def post(self, tenant_id, dataset_id, document_id, segment_id):
- """Create child chunk."""
- # check dataset
- dataset_id = str(dataset_id)
- tenant_id = str(tenant_id)
- dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
- if not dataset:
- raise NotFound("Dataset not found.")
- # check document
- document_id = str(document_id)
- document = DocumentService.get_document(dataset.id, document_id)
- if not document:
- raise NotFound("Document not found.")
- # check segment
- segment_id = str(segment_id)
- segment = SegmentService.get_segment_by_id(segment_id=segment_id, tenant_id=current_user.current_tenant_id)
- if not segment:
- raise NotFound("Segment not found.")
- # check embedding model setting
- if dataset.indexing_technique == "high_quality":
- try:
- model_manager = ModelManager()
- model_manager.get_model_instance(
- tenant_id=current_user.current_tenant_id,
- provider=dataset.embedding_model_provider,
- model_type=ModelType.TEXT_EMBEDDING,
- model=dataset.embedding_model,
- )
- except LLMBadRequestError:
- raise ProviderNotInitializeError(
- "No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
- )
- except ProviderTokenNotInitError as ex:
- raise ProviderNotInitializeError(ex.description)
- # validate args
- parser = reqparse.RequestParser()
- parser.add_argument("content", type=str, required=True, nullable=False, location="json")
- args = parser.parse_args()
- try:
- child_chunk = SegmentService.create_child_chunk(args.get("content"), segment, document, dataset)
- except ChildChunkIndexingServiceError as e:
- raise ChildChunkIndexingError(str(e))
- return {"data": marshal(child_chunk, child_chunk_fields)}, 200
- def get(self, tenant_id, dataset_id, document_id, segment_id):
- """Get child chunks."""
- # check dataset
- dataset_id = str(dataset_id)
- tenant_id = str(tenant_id)
- dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
- if not dataset:
- raise NotFound("Dataset not found.")
- # check document
- document_id = str(document_id)
- document = DocumentService.get_document(dataset.id, document_id)
- if not document:
- raise NotFound("Document not found.")
- # check segment
- segment_id = str(segment_id)
- segment = SegmentService.get_segment_by_id(segment_id=segment_id, tenant_id=current_user.current_tenant_id)
- if not segment:
- raise NotFound("Segment not found.")
- parser = reqparse.RequestParser()
- parser.add_argument("limit", type=int, default=20, location="args")
- parser.add_argument("keyword", type=str, default=None, location="args")
- parser.add_argument("page", type=int, default=1, location="args")
- args = parser.parse_args()
- page = args["page"]
- limit = min(args["limit"], 100)
- keyword = args["keyword"]
- child_chunks = SegmentService.get_child_chunks(segment_id, document_id, dataset_id, page, limit, keyword)
- return {
- "data": marshal(child_chunks.items, child_chunk_fields),
- "total": child_chunks.total,
- "total_pages": child_chunks.pages,
- "page": page,
- "limit": limit,
- }, 200
- class DatasetChildChunkApi(DatasetApiResource):
- """Resource for updating child chunks."""
- @cloud_edition_billing_knowledge_limit_check("add_segment", "dataset")
- def delete(self, tenant_id, dataset_id, document_id, segment_id, child_chunk_id):
- """Delete child chunk."""
- # check dataset
- dataset_id = str(dataset_id)
- tenant_id = str(tenant_id)
- dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
- if not dataset:
- raise NotFound("Dataset not found.")
- # check document
- document_id = str(document_id)
- document = DocumentService.get_document(dataset.id, document_id)
- if not document:
- raise NotFound("Document not found.")
- # check segment
- segment_id = str(segment_id)
- segment = SegmentService.get_segment_by_id(segment_id=segment_id, tenant_id=current_user.current_tenant_id)
- if not segment:
- raise NotFound("Segment not found.")
- # check child chunk
- child_chunk_id = str(child_chunk_id)
- child_chunk = SegmentService.get_child_chunk_by_id(
- child_chunk_id=child_chunk_id, tenant_id=current_user.current_tenant_id
- )
- if not child_chunk:
- raise NotFound("Child chunk not found.")
- try:
- SegmentService.delete_child_chunk(child_chunk, dataset)
- except ChildChunkDeleteIndexServiceError as e:
- raise ChildChunkDeleteIndexError(str(e))
- return {"result": "success"}, 200
- @cloud_edition_billing_resource_check("vector_space", "dataset")
- @cloud_edition_billing_knowledge_limit_check("add_segment", "dataset")
- def patch(self, tenant_id, dataset_id, document_id, segment_id, child_chunk_id):
- """Update child chunk."""
- # check dataset
- dataset_id = str(dataset_id)
- tenant_id = str(tenant_id)
- dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
- if not dataset:
- raise NotFound("Dataset not found.")
- # get document
- document = DocumentService.get_document(dataset_id, document_id)
- if not document:
- raise NotFound("Document not found.")
- # get segment
- segment = SegmentService.get_segment_by_id(segment_id=segment_id, tenant_id=current_user.current_tenant_id)
- if not segment:
- raise NotFound("Segment not found.")
- # get child chunk
- child_chunk = SegmentService.get_child_chunk_by_id(
- child_chunk_id=child_chunk_id, tenant_id=current_user.current_tenant_id
- )
- if not child_chunk:
- raise NotFound("Child chunk not found.")
- # validate args
- parser = reqparse.RequestParser()
- parser.add_argument("content", type=str, required=True, nullable=False, location="json")
- args = parser.parse_args()
- try:
- child_chunk = SegmentService.update_child_chunk(
- args.get("content"), child_chunk, segment, document, dataset
- )
- except ChildChunkIndexingServiceError as e:
- raise ChildChunkIndexingError(str(e))
- return {"data": marshal(child_chunk, child_chunk_fields)}, 200
- api.add_resource(SegmentApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments")
- api.add_resource(
- DatasetSegmentApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments/<uuid:segment_id>"
- )
- api.add_resource(
- ChildChunkApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments/<uuid:segment_id>/child_chunks"
- )
- api.add_resource(
- DatasetChildChunkApi,
- "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments/<uuid:segment_id>/child_chunks/<uuid:child_chunk_id>",
- )
|