dataset_service.py 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821
  1. import json
  2. import logging
  3. import datetime
  4. import time
  5. import random
  6. from typing import Optional, List
  7. from extensions.ext_redis import redis_client
  8. from flask_login import current_user
  9. from events.dataset_event import dataset_was_deleted
  10. from events.document_event import document_was_deleted
  11. from extensions.ext_database import db
  12. from models.account import Account
  13. from models.dataset import Dataset, Document, DatasetQuery, DatasetProcessRule, AppDatasetJoin, DocumentSegment
  14. from models.model import UploadFile
  15. from models.source import DataSourceBinding
  16. from services.errors.account import NoPermissionError
  17. from services.errors.dataset import DatasetNameDuplicateError
  18. from services.errors.document import DocumentIndexingError
  19. from services.errors.file import FileNotExistsError
  20. from tasks.clean_notion_document_task import clean_notion_document_task
  21. from tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_task
  22. from tasks.document_indexing_task import document_indexing_task
  23. from tasks.document_indexing_update_task import document_indexing_update_task
  24. class DatasetService:
  25. @staticmethod
  26. def get_datasets(page, per_page, provider="vendor", tenant_id=None, user=None):
  27. if user:
  28. permission_filter = db.or_(Dataset.created_by == user.id,
  29. Dataset.permission == 'all_team_members')
  30. else:
  31. permission_filter = Dataset.permission == 'all_team_members'
  32. datasets = Dataset.query.filter(
  33. db.and_(Dataset.provider == provider, Dataset.tenant_id == tenant_id, permission_filter)) \
  34. .paginate(
  35. page=page,
  36. per_page=per_page,
  37. max_per_page=100,
  38. error_out=False
  39. )
  40. return datasets.items, datasets.total
  41. @staticmethod
  42. def get_process_rules(dataset_id):
  43. # get the latest process rule
  44. dataset_process_rule = db.session.query(DatasetProcessRule). \
  45. filter(DatasetProcessRule.dataset_id == dataset_id). \
  46. order_by(DatasetProcessRule.created_at.desc()). \
  47. limit(1). \
  48. one_or_none()
  49. if dataset_process_rule:
  50. mode = dataset_process_rule.mode
  51. rules = dataset_process_rule.rules_dict
  52. else:
  53. mode = DocumentService.DEFAULT_RULES['mode']
  54. rules = DocumentService.DEFAULT_RULES['rules']
  55. return {
  56. 'mode': mode,
  57. 'rules': rules
  58. }
  59. @staticmethod
  60. def get_datasets_by_ids(ids, tenant_id):
  61. datasets = Dataset.query.filter(Dataset.id.in_(ids),
  62. Dataset.tenant_id == tenant_id).paginate(
  63. page=1, per_page=len(ids), max_per_page=len(ids), error_out=False)
  64. return datasets.items, datasets.total
  65. @staticmethod
  66. def create_empty_dataset(tenant_id: str, name: str, indexing_technique: Optional[str], account: Account):
  67. # check if dataset name already exists
  68. if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():
  69. raise DatasetNameDuplicateError(
  70. f'Dataset with name {name} already exists.')
  71. dataset = Dataset(name=name, indexing_technique=indexing_technique)
  72. # dataset = Dataset(name=name, provider=provider, config=config)
  73. dataset.created_by = account.id
  74. dataset.updated_by = account.id
  75. dataset.tenant_id = tenant_id
  76. db.session.add(dataset)
  77. db.session.commit()
  78. return dataset
  79. @staticmethod
  80. def get_dataset(dataset_id):
  81. dataset = Dataset.query.filter_by(
  82. id=dataset_id
  83. ).first()
  84. if dataset is None:
  85. return None
  86. else:
  87. return dataset
  88. @staticmethod
  89. def update_dataset(dataset_id, data, user):
  90. dataset = DatasetService.get_dataset(dataset_id)
  91. DatasetService.check_dataset_permission(dataset, user)
  92. if dataset.indexing_technique != data['indexing_technique']:
  93. # if update indexing_technique
  94. if data['indexing_technique'] == 'economy':
  95. deal_dataset_vector_index_task.delay(dataset_id, 'remove')
  96. elif data['indexing_technique'] == 'high_quality':
  97. deal_dataset_vector_index_task.delay(dataset_id, 'add')
  98. filtered_data = {k: v for k, v in data.items() if v is not None or k == 'description'}
  99. filtered_data['updated_by'] = user.id
  100. filtered_data['updated_at'] = datetime.datetime.now()
  101. dataset.query.filter_by(id=dataset_id).update(filtered_data)
  102. db.session.commit()
  103. return dataset
  104. @staticmethod
  105. def delete_dataset(dataset_id, user):
  106. # todo: cannot delete dataset if it is being processed
  107. dataset = DatasetService.get_dataset(dataset_id)
  108. if dataset is None:
  109. return False
  110. DatasetService.check_dataset_permission(dataset, user)
  111. dataset_was_deleted.send(dataset)
  112. db.session.delete(dataset)
  113. db.session.commit()
  114. return True
  115. @staticmethod
  116. def check_dataset_permission(dataset, user):
  117. if dataset.tenant_id != user.current_tenant_id:
  118. logging.debug(
  119. f'User {user.id} does not have permission to access dataset {dataset.id}')
  120. raise NoPermissionError(
  121. 'You do not have permission to access this dataset.')
  122. if dataset.permission == 'only_me' and dataset.created_by != user.id:
  123. logging.debug(
  124. f'User {user.id} does not have permission to access dataset {dataset.id}')
  125. raise NoPermissionError(
  126. 'You do not have permission to access this dataset.')
  127. @staticmethod
  128. def get_dataset_queries(dataset_id: str, page: int, per_page: int):
  129. dataset_queries = DatasetQuery.query.filter_by(dataset_id=dataset_id) \
  130. .order_by(db.desc(DatasetQuery.created_at)) \
  131. .paginate(
  132. page=page, per_page=per_page, max_per_page=100, error_out=False
  133. )
  134. return dataset_queries.items, dataset_queries.total
  135. @staticmethod
  136. def get_related_apps(dataset_id: str):
  137. return AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id) \
  138. .order_by(db.desc(AppDatasetJoin.created_at)).all()
  139. class DocumentService:
  140. DEFAULT_RULES = {
  141. 'mode': 'custom',
  142. 'rules': {
  143. 'pre_processing_rules': [
  144. {'id': 'remove_extra_spaces', 'enabled': True},
  145. {'id': 'remove_urls_emails', 'enabled': False}
  146. ],
  147. 'segmentation': {
  148. 'delimiter': '\n',
  149. 'max_tokens': 500
  150. }
  151. }
  152. }
  153. DOCUMENT_METADATA_SCHEMA = {
  154. "book": {
  155. "title": str,
  156. "language": str,
  157. "author": str,
  158. "publisher": str,
  159. "publication_date": str,
  160. "isbn": str,
  161. "category": str,
  162. },
  163. "web_page": {
  164. "title": str,
  165. "url": str,
  166. "language": str,
  167. "publish_date": str,
  168. "author/publisher": str,
  169. "topic/keywords": str,
  170. "description": str,
  171. },
  172. "paper": {
  173. "title": str,
  174. "language": str,
  175. "author": str,
  176. "publish_date": str,
  177. "journal/conference_name": str,
  178. "volume/issue/page_numbers": str,
  179. "doi": str,
  180. "topic/keywords": str,
  181. "abstract": str,
  182. },
  183. "social_media_post": {
  184. "platform": str,
  185. "author/username": str,
  186. "publish_date": str,
  187. "post_url": str,
  188. "topic/tags": str,
  189. },
  190. "wikipedia_entry": {
  191. "title": str,
  192. "language": str,
  193. "web_page_url": str,
  194. "last_edit_date": str,
  195. "editor/contributor": str,
  196. "summary/introduction": str,
  197. },
  198. "personal_document": {
  199. "title": str,
  200. "author": str,
  201. "creation_date": str,
  202. "last_modified_date": str,
  203. "document_type": str,
  204. "tags/category": str,
  205. },
  206. "business_document": {
  207. "title": str,
  208. "author": str,
  209. "creation_date": str,
  210. "last_modified_date": str,
  211. "document_type": str,
  212. "department/team": str,
  213. },
  214. "im_chat_log": {
  215. "chat_platform": str,
  216. "chat_participants/group_name": str,
  217. "start_date": str,
  218. "end_date": str,
  219. "summary": str,
  220. },
  221. "synced_from_notion": {
  222. "title": str,
  223. "language": str,
  224. "author/creator": str,
  225. "creation_date": str,
  226. "last_modified_date": str,
  227. "notion_page_link": str,
  228. "category/tags": str,
  229. "description": str,
  230. },
  231. "synced_from_github": {
  232. "repository_name": str,
  233. "repository_description": str,
  234. "repository_owner/organization": str,
  235. "code_filename": str,
  236. "code_file_path": str,
  237. "programming_language": str,
  238. "github_link": str,
  239. "open_source_license": str,
  240. "commit_date": str,
  241. "commit_author": str
  242. }
  243. }
  244. @staticmethod
  245. def get_document(dataset_id: str, document_id: str) -> Optional[Document]:
  246. document = db.session.query(Document).filter(
  247. Document.id == document_id,
  248. Document.dataset_id == dataset_id
  249. ).first()
  250. return document
  251. @staticmethod
  252. def get_document_by_id(document_id: str) -> Optional[Document]:
  253. document = db.session.query(Document).filter(
  254. Document.id == document_id
  255. ).first()
  256. return document
  257. @staticmethod
  258. def get_document_by_dataset_id(dataset_id: str) -> List[Document]:
  259. documents = db.session.query(Document).filter(
  260. Document.dataset_id == dataset_id,
  261. Document.enabled == True
  262. ).all()
  263. return documents
  264. @staticmethod
  265. def get_batch_documents(dataset_id: str, batch: str) -> List[Document]:
  266. documents = db.session.query(Document).filter(
  267. Document.batch == batch,
  268. Document.dataset_id == dataset_id,
  269. Document.tenant_id == current_user.current_tenant_id
  270. ).all()
  271. return documents
  272. @staticmethod
  273. def get_document_file_detail(file_id: str):
  274. file_detail = db.session.query(UploadFile). \
  275. filter(UploadFile.id == file_id). \
  276. one_or_none()
  277. return file_detail
  278. @staticmethod
  279. def check_archived(document):
  280. if document.archived:
  281. return True
  282. else:
  283. return False
  284. @staticmethod
  285. def delete_document(document):
  286. if document.indexing_status in ["parsing", "cleaning", "splitting", "indexing"]:
  287. raise DocumentIndexingError()
  288. # trigger document_was_deleted signal
  289. document_was_deleted.send(document.id, dataset_id=document.dataset_id)
  290. db.session.delete(document)
  291. db.session.commit()
  292. @staticmethod
  293. def pause_document(document):
  294. if document.indexing_status not in ["waiting", "parsing", "cleaning", "splitting", "indexing"]:
  295. raise DocumentIndexingError()
  296. # update document to be paused
  297. document.is_paused = True
  298. document.paused_by = current_user.id
  299. document.paused_at = datetime.datetime.utcnow()
  300. db.session.add(document)
  301. db.session.commit()
  302. # set document paused flag
  303. indexing_cache_key = 'document_{}_is_paused'.format(document.id)
  304. redis_client.setnx(indexing_cache_key, "True")
  305. @staticmethod
  306. def recover_document(document):
  307. if not document.is_paused:
  308. raise DocumentIndexingError()
  309. # update document to be recover
  310. document.is_paused = False
  311. document.paused_by = current_user.id
  312. document.paused_at = time.time()
  313. db.session.add(document)
  314. db.session.commit()
  315. # delete paused flag
  316. indexing_cache_key = 'document_{}_is_paused'.format(document.id)
  317. redis_client.delete(indexing_cache_key)
  318. # trigger async task
  319. document_indexing_task.delay(document.dataset_id, document.id)
  320. @staticmethod
  321. def get_documents_position(dataset_id):
  322. document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first()
  323. if document:
  324. return document.position + 1
  325. else:
  326. return 1
  327. @staticmethod
  328. def save_document_with_dataset_id(dataset: Dataset, document_data: dict,
  329. account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
  330. created_from: str = 'web'):
  331. # if dataset is empty, update dataset data_source_type
  332. if not dataset.data_source_type:
  333. dataset.data_source_type = document_data["data_source"]["type"]
  334. db.session.commit()
  335. if not dataset.indexing_technique:
  336. if 'indexing_technique' not in document_data \
  337. or document_data['indexing_technique'] not in Dataset.INDEXING_TECHNIQUE_LIST:
  338. raise ValueError("Indexing technique is required")
  339. dataset.indexing_technique = document_data["indexing_technique"]
  340. documents = []
  341. batch = time.strftime('%Y%m%d%H%M%S') + str(random.randint(100000, 999999))
  342. if 'original_document_id' in document_data and document_data["original_document_id"]:
  343. document = DocumentService.update_document_with_dataset_id(dataset, document_data, account)
  344. documents.append(document)
  345. else:
  346. # save process rule
  347. if not dataset_process_rule:
  348. process_rule = document_data["process_rule"]
  349. if process_rule["mode"] == "custom":
  350. dataset_process_rule = DatasetProcessRule(
  351. dataset_id=dataset.id,
  352. mode=process_rule["mode"],
  353. rules=json.dumps(process_rule["rules"]),
  354. created_by=account.id
  355. )
  356. elif process_rule["mode"] == "automatic":
  357. dataset_process_rule = DatasetProcessRule(
  358. dataset_id=dataset.id,
  359. mode=process_rule["mode"],
  360. rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
  361. created_by=account.id
  362. )
  363. db.session.add(dataset_process_rule)
  364. db.session.commit()
  365. position = DocumentService.get_documents_position(dataset.id)
  366. document_ids = []
  367. if document_data["data_source"]["type"] == "upload_file":
  368. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  369. for file_id in upload_file_list:
  370. file = db.session.query(UploadFile).filter(
  371. UploadFile.tenant_id == dataset.tenant_id,
  372. UploadFile.id == file_id
  373. ).first()
  374. # raise error if file not found
  375. if not file:
  376. raise FileNotExistsError()
  377. file_name = file.name
  378. data_source_info = {
  379. "upload_file_id": file_id,
  380. }
  381. document = DocumentService.save_document(dataset, dataset_process_rule.id,
  382. document_data["data_source"]["type"],
  383. data_source_info, created_from, position,
  384. account, file_name, batch)
  385. db.session.add(document)
  386. db.session.flush()
  387. document_ids.append(document.id)
  388. documents.append(document)
  389. position += 1
  390. elif document_data["data_source"]["type"] == "notion_import":
  391. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  392. exist_page_ids = []
  393. exist_document = dict()
  394. documents = Document.query.filter_by(
  395. dataset_id=dataset.id,
  396. tenant_id=current_user.current_tenant_id,
  397. data_source_type='notion_import',
  398. enabled=True
  399. ).all()
  400. if documents:
  401. for document in documents:
  402. data_source_info = json.loads(document.data_source_info)
  403. exist_page_ids.append(data_source_info['notion_page_id'])
  404. exist_document[data_source_info['notion_page_id']] = document.id
  405. for notion_info in notion_info_list:
  406. workspace_id = notion_info['workspace_id']
  407. data_source_binding = DataSourceBinding.query.filter(
  408. db.and_(
  409. DataSourceBinding.tenant_id == current_user.current_tenant_id,
  410. DataSourceBinding.provider == 'notion',
  411. DataSourceBinding.disabled == False,
  412. DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
  413. )
  414. ).first()
  415. if not data_source_binding:
  416. raise ValueError('Data source binding not found.')
  417. for page in notion_info['pages']:
  418. if page['page_id'] not in exist_page_ids:
  419. data_source_info = {
  420. "notion_workspace_id": workspace_id,
  421. "notion_page_id": page['page_id'],
  422. "notion_page_icon": page['page_icon'],
  423. "type": page['type']
  424. }
  425. document = DocumentService.save_document(dataset, dataset_process_rule.id,
  426. document_data["data_source"]["type"],
  427. data_source_info, created_from, position,
  428. account, page['page_name'], batch)
  429. # if page['type'] == 'database':
  430. # document.splitting_completed_at = datetime.datetime.utcnow()
  431. # document.cleaning_completed_at = datetime.datetime.utcnow()
  432. # document.parsing_completed_at = datetime.datetime.utcnow()
  433. # document.completed_at = datetime.datetime.utcnow()
  434. # document.indexing_status = 'completed'
  435. # document.word_count = 0
  436. # document.tokens = 0
  437. # document.indexing_latency = 0
  438. db.session.add(document)
  439. db.session.flush()
  440. # if page['type'] != 'database':
  441. document_ids.append(document.id)
  442. documents.append(document)
  443. position += 1
  444. else:
  445. exist_document.pop(page['page_id'])
  446. # delete not selected documents
  447. if len(exist_document) > 0:
  448. clean_notion_document_task.delay(list(exist_document.values()), dataset.id)
  449. db.session.commit()
  450. # trigger async task
  451. document_indexing_task.delay(dataset.id, document_ids)
  452. return documents, batch
  453. @staticmethod
  454. def save_document(dataset: Dataset, process_rule_id: str, data_source_type: str, data_source_info: dict,
  455. created_from: str, position: int, account: Account, name: str, batch: str):
  456. document = Document(
  457. tenant_id=dataset.tenant_id,
  458. dataset_id=dataset.id,
  459. position=position,
  460. data_source_type=data_source_type,
  461. data_source_info=json.dumps(data_source_info),
  462. dataset_process_rule_id=process_rule_id,
  463. batch=batch,
  464. name=name,
  465. created_from=created_from,
  466. created_by=account.id,
  467. )
  468. return document
  469. @staticmethod
  470. def update_document_with_dataset_id(dataset: Dataset, document_data: dict,
  471. account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
  472. created_from: str = 'web'):
  473. document = DocumentService.get_document(dataset.id, document_data["original_document_id"])
  474. if document.display_status != 'available':
  475. raise ValueError("Document is not available")
  476. # save process rule
  477. if 'process_rule' in document_data and document_data['process_rule']:
  478. process_rule = document_data["process_rule"]
  479. if process_rule["mode"] == "custom":
  480. dataset_process_rule = DatasetProcessRule(
  481. dataset_id=dataset.id,
  482. mode=process_rule["mode"],
  483. rules=json.dumps(process_rule["rules"]),
  484. created_by=account.id
  485. )
  486. elif process_rule["mode"] == "automatic":
  487. dataset_process_rule = DatasetProcessRule(
  488. dataset_id=dataset.id,
  489. mode=process_rule["mode"],
  490. rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
  491. created_by=account.id
  492. )
  493. db.session.add(dataset_process_rule)
  494. db.session.commit()
  495. document.dataset_process_rule_id = dataset_process_rule.id
  496. # update document data source
  497. if 'data_source' in document_data and document_data['data_source']:
  498. file_name = ''
  499. data_source_info = {}
  500. if document_data["data_source"]["type"] == "upload_file":
  501. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  502. for file_id in upload_file_list:
  503. file = db.session.query(UploadFile).filter(
  504. UploadFile.tenant_id == dataset.tenant_id,
  505. UploadFile.id == file_id
  506. ).first()
  507. # raise error if file not found
  508. if not file:
  509. raise FileNotExistsError()
  510. file_name = file.name
  511. data_source_info = {
  512. "upload_file_id": file_id,
  513. }
  514. elif document_data["data_source"]["type"] == "notion_import":
  515. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  516. for notion_info in notion_info_list:
  517. workspace_id = notion_info['workspace_id']
  518. data_source_binding = DataSourceBinding.query.filter(
  519. db.and_(
  520. DataSourceBinding.tenant_id == current_user.current_tenant_id,
  521. DataSourceBinding.provider == 'notion',
  522. DataSourceBinding.disabled == False,
  523. DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
  524. )
  525. ).first()
  526. if not data_source_binding:
  527. raise ValueError('Data source binding not found.')
  528. for page in notion_info['pages']:
  529. data_source_info = {
  530. "notion_workspace_id": workspace_id,
  531. "notion_page_id": page['page_id'],
  532. "notion_page_icon": page['page_icon'],
  533. "type": page['type']
  534. }
  535. document.data_source_type = document_data["data_source"]["type"]
  536. document.data_source_info = json.dumps(data_source_info)
  537. document.name = file_name
  538. # update document to be waiting
  539. document.indexing_status = 'waiting'
  540. document.completed_at = None
  541. document.processing_started_at = None
  542. document.parsing_completed_at = None
  543. document.cleaning_completed_at = None
  544. document.splitting_completed_at = None
  545. document.updated_at = datetime.datetime.utcnow()
  546. document.created_from = created_from
  547. db.session.add(document)
  548. db.session.commit()
  549. # update document segment
  550. update_params = {
  551. DocumentSegment.status: 're_segment'
  552. }
  553. DocumentSegment.query.filter_by(document_id=document.id).update(update_params)
  554. db.session.commit()
  555. # trigger async task
  556. document_indexing_update_task.delay(document.dataset_id, document.id)
  557. return document
  558. @staticmethod
  559. def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account):
  560. # save dataset
  561. dataset = Dataset(
  562. tenant_id=tenant_id,
  563. name='',
  564. data_source_type=document_data["data_source"]["type"],
  565. indexing_technique=document_data["indexing_technique"],
  566. created_by=account.id
  567. )
  568. db.session.add(dataset)
  569. db.session.flush()
  570. documents, batch = DocumentService.save_document_with_dataset_id(dataset, document_data, account)
  571. cut_length = 18
  572. cut_name = documents[0].name[:cut_length]
  573. dataset.name = cut_name + '...'
  574. dataset.description = 'useful for when you want to answer queries about the ' + documents[0].name
  575. db.session.commit()
  576. return dataset, documents, batch
  577. @classmethod
  578. def document_create_args_validate(cls, args: dict):
  579. if 'original_document_id' not in args or not args['original_document_id']:
  580. DocumentService.data_source_args_validate(args)
  581. DocumentService.process_rule_args_validate(args)
  582. else:
  583. if ('data_source' not in args and not args['data_source'])\
  584. and ('process_rule' not in args and not args['process_rule']):
  585. raise ValueError("Data source or Process rule is required")
  586. else:
  587. if 'data_source' in args and args['data_source']:
  588. DocumentService.data_source_args_validate(args)
  589. if 'process_rule' in args and args['process_rule']:
  590. DocumentService.process_rule_args_validate(args)
  591. @classmethod
  592. def data_source_args_validate(cls, args: dict):
  593. if 'data_source' not in args or not args['data_source']:
  594. raise ValueError("Data source is required")
  595. if not isinstance(args['data_source'], dict):
  596. raise ValueError("Data source is invalid")
  597. if 'type' not in args['data_source'] or not args['data_source']['type']:
  598. raise ValueError("Data source type is required")
  599. if args['data_source']['type'] not in Document.DATA_SOURCES:
  600. raise ValueError("Data source type is invalid")
  601. if 'info_list' not in args['data_source'] or not args['data_source']['info_list']:
  602. raise ValueError("Data source info is required")
  603. if args['data_source']['type'] == 'upload_file':
  604. if 'file_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list']['file_info_list']:
  605. raise ValueError("File source info is required")
  606. if args['data_source']['type'] == 'notion_import':
  607. if 'notion_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list']['notion_info_list']:
  608. raise ValueError("Notion source info is required")
  609. @classmethod
  610. def process_rule_args_validate(cls, args: dict):
  611. if 'process_rule' not in args or not args['process_rule']:
  612. raise ValueError("Process rule is required")
  613. if not isinstance(args['process_rule'], dict):
  614. raise ValueError("Process rule is invalid")
  615. if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
  616. raise ValueError("Process rule mode is required")
  617. if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
  618. raise ValueError("Process rule mode is invalid")
  619. if args['process_rule']['mode'] == 'automatic':
  620. args['process_rule']['rules'] = {}
  621. else:
  622. if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
  623. raise ValueError("Process rule rules is required")
  624. if not isinstance(args['process_rule']['rules'], dict):
  625. raise ValueError("Process rule rules is invalid")
  626. if 'pre_processing_rules' not in args['process_rule']['rules'] \
  627. or args['process_rule']['rules']['pre_processing_rules'] is None:
  628. raise ValueError("Process rule pre_processing_rules is required")
  629. if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
  630. raise ValueError("Process rule pre_processing_rules is invalid")
  631. unique_pre_processing_rule_dicts = {}
  632. for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
  633. if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
  634. raise ValueError("Process rule pre_processing_rules id is required")
  635. if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
  636. raise ValueError("Process rule pre_processing_rules id is invalid")
  637. if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
  638. raise ValueError("Process rule pre_processing_rules enabled is required")
  639. if not isinstance(pre_processing_rule['enabled'], bool):
  640. raise ValueError("Process rule pre_processing_rules enabled is invalid")
  641. unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
  642. args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
  643. if 'segmentation' not in args['process_rule']['rules'] \
  644. or args['process_rule']['rules']['segmentation'] is None:
  645. raise ValueError("Process rule segmentation is required")
  646. if not isinstance(args['process_rule']['rules']['segmentation'], dict):
  647. raise ValueError("Process rule segmentation is invalid")
  648. if 'separator' not in args['process_rule']['rules']['segmentation'] \
  649. or not args['process_rule']['rules']['segmentation']['separator']:
  650. raise ValueError("Process rule segmentation separator is required")
  651. if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
  652. raise ValueError("Process rule segmentation separator is invalid")
  653. if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
  654. or not args['process_rule']['rules']['segmentation']['max_tokens']:
  655. raise ValueError("Process rule segmentation max_tokens is required")
  656. if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
  657. raise ValueError("Process rule segmentation max_tokens is invalid")
  658. @classmethod
  659. def estimate_args_validate(cls, args: dict):
  660. if 'info_list' not in args or not args['info_list']:
  661. raise ValueError("Data source info is required")
  662. if not isinstance(args['info_list'], dict):
  663. raise ValueError("Data info is invalid")
  664. if 'process_rule' not in args or not args['process_rule']:
  665. raise ValueError("Process rule is required")
  666. if not isinstance(args['process_rule'], dict):
  667. raise ValueError("Process rule is invalid")
  668. if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
  669. raise ValueError("Process rule mode is required")
  670. if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
  671. raise ValueError("Process rule mode is invalid")
  672. if args['process_rule']['mode'] == 'automatic':
  673. args['process_rule']['rules'] = {}
  674. else:
  675. if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
  676. raise ValueError("Process rule rules is required")
  677. if not isinstance(args['process_rule']['rules'], dict):
  678. raise ValueError("Process rule rules is invalid")
  679. if 'pre_processing_rules' not in args['process_rule']['rules'] \
  680. or args['process_rule']['rules']['pre_processing_rules'] is None:
  681. raise ValueError("Process rule pre_processing_rules is required")
  682. if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
  683. raise ValueError("Process rule pre_processing_rules is invalid")
  684. unique_pre_processing_rule_dicts = {}
  685. for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
  686. if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
  687. raise ValueError("Process rule pre_processing_rules id is required")
  688. if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
  689. raise ValueError("Process rule pre_processing_rules id is invalid")
  690. if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
  691. raise ValueError("Process rule pre_processing_rules enabled is required")
  692. if not isinstance(pre_processing_rule['enabled'], bool):
  693. raise ValueError("Process rule pre_processing_rules enabled is invalid")
  694. unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
  695. args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
  696. if 'segmentation' not in args['process_rule']['rules'] \
  697. or args['process_rule']['rules']['segmentation'] is None:
  698. raise ValueError("Process rule segmentation is required")
  699. if not isinstance(args['process_rule']['rules']['segmentation'], dict):
  700. raise ValueError("Process rule segmentation is invalid")
  701. if 'separator' not in args['process_rule']['rules']['segmentation'] \
  702. or not args['process_rule']['rules']['segmentation']['separator']:
  703. raise ValueError("Process rule segmentation separator is required")
  704. if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
  705. raise ValueError("Process rule segmentation separator is invalid")
  706. if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
  707. or not args['process_rule']['rules']['segmentation']['max_tokens']:
  708. raise ValueError("Process rule segmentation max_tokens is required")
  709. if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
  710. raise ValueError("Process rule segmentation max_tokens is invalid")