builtin_tool.py 4.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138
  1. from typing import List
  2. from core.model_runtime.entities.llm_entities import LLMResult
  3. from core.model_runtime.entities.message_entities import PromptMessage, SystemPromptMessage, UserPromptMessage
  4. from core.tools.model.tool_model_manager import ToolModelManager
  5. from core.tools.tool.tool import Tool
  6. from core.tools.utils.web_reader_tool import get_url
  7. _SUMMARY_PROMPT = """You are a professional language researcher, you are interested in the language
  8. and you can quickly aimed at the main point of an webpage and reproduce it in your own words but
  9. retain the original meaning and keep the key points.
  10. however, the text you got is too long, what you got is possible a part of the text.
  11. Please summarize the text you got.
  12. """
  13. class BuiltinTool(Tool):
  14. """
  15. Builtin tool
  16. :param meta: the meta data of a tool call processing
  17. """
  18. def invoke_model(
  19. self, user_id: str, prompt_messages: List[PromptMessage], stop: List[str]
  20. ) -> LLMResult:
  21. """
  22. invoke model
  23. :param model_config: the model config
  24. :param prompt_messages: the prompt messages
  25. :param stop: the stop words
  26. :return: the model result
  27. """
  28. # invoke model
  29. return ToolModelManager.invoke(
  30. user_id=user_id,
  31. tenant_id=self.runtime.tenant_id,
  32. tool_type='builtin',
  33. tool_name=self.identity.name,
  34. prompt_messages=prompt_messages,
  35. )
  36. def get_max_tokens(self) -> int:
  37. """
  38. get max tokens
  39. :param model_config: the model config
  40. :return: the max tokens
  41. """
  42. return ToolModelManager.get_max_llm_context_tokens(
  43. tenant_id=self.runtime.tenant_id,
  44. )
  45. def get_prompt_tokens(self, prompt_messages: List[PromptMessage]) -> int:
  46. """
  47. get prompt tokens
  48. :param prompt_messages: the prompt messages
  49. :return: the tokens
  50. """
  51. return ToolModelManager.calculate_tokens(
  52. tenant_id=self.runtime.tenant_id,
  53. prompt_messages=prompt_messages
  54. )
  55. def summary(self, user_id: str, content: str) -> str:
  56. max_tokens = self.get_max_tokens()
  57. if self.get_prompt_tokens(prompt_messages=[
  58. UserPromptMessage(content=content)
  59. ]) < max_tokens * 0.6:
  60. return content
  61. def get_prompt_tokens(content: str) -> int:
  62. return self.get_prompt_tokens(prompt_messages=[
  63. SystemPromptMessage(content=_SUMMARY_PROMPT),
  64. UserPromptMessage(content=content)
  65. ])
  66. def summarize(content: str) -> str:
  67. summary = self.invoke_model(user_id=user_id, prompt_messages=[
  68. SystemPromptMessage(content=_SUMMARY_PROMPT),
  69. UserPromptMessage(content=content)
  70. ], stop=[])
  71. return summary.message.content
  72. lines = content.split('\n')
  73. new_lines = []
  74. # split long line into multiple lines
  75. for i in range(len(lines)):
  76. line = lines[i]
  77. if not line.strip():
  78. continue
  79. if len(line) < max_tokens * 0.5:
  80. new_lines.append(line)
  81. elif get_prompt_tokens(line) > max_tokens * 0.7:
  82. while get_prompt_tokens(line) > max_tokens * 0.7:
  83. new_lines.append(line[:int(max_tokens * 0.5)])
  84. line = line[int(max_tokens * 0.5):]
  85. new_lines.append(line)
  86. else:
  87. new_lines.append(line)
  88. # merge lines into messages with max tokens
  89. messages: List[str] = []
  90. for i in new_lines:
  91. if len(messages) == 0:
  92. messages.append(i)
  93. else:
  94. if len(messages[-1]) + len(i) < max_tokens * 0.5:
  95. messages[-1] += i
  96. if get_prompt_tokens(messages[-1] + i) > max_tokens * 0.7:
  97. messages.append(i)
  98. else:
  99. messages[-1] += i
  100. summaries = []
  101. for i in range(len(messages)):
  102. message = messages[i]
  103. summary = summarize(message)
  104. summaries.append(summary)
  105. result = '\n'.join(summaries)
  106. if self.get_prompt_tokens(prompt_messages=[
  107. UserPromptMessage(content=result)
  108. ]) > max_tokens * 0.7:
  109. return self.summary(user_id=user_id, content=result)
  110. return result
  111. def get_url(self, url: str, user_agent: str = None) -> str:
  112. """
  113. get url
  114. """
  115. return get_url(url, user_agent=user_agent)