test_embedding.py 2.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081
  1. import os
  2. from time import sleep
  3. from core.model_runtime.entities.text_embedding_entities import TextEmbeddingResult
  4. from core.model_runtime.model_providers.wenxin.text_embedding.text_embedding import WenxinTextEmbeddingModel
  5. def test_invoke_embedding_v1():
  6. sleep(3)
  7. model = WenxinTextEmbeddingModel()
  8. response = model.invoke(
  9. model='embedding-v1',
  10. credentials={
  11. 'api_key': os.environ.get('WENXIN_API_KEY'),
  12. 'secret_key': os.environ.get('WENXIN_SECRET_KEY')
  13. },
  14. texts=['hello', '你好', 'xxxxx'],
  15. user="abc-123"
  16. )
  17. assert isinstance(response, TextEmbeddingResult)
  18. assert len(response.embeddings) == 3
  19. assert isinstance(response.embeddings[0], list)
  20. def test_invoke_embedding_bge_large_en():
  21. sleep(3)
  22. model = WenxinTextEmbeddingModel()
  23. response = model.invoke(
  24. model='bge-large-en',
  25. credentials={
  26. 'api_key': os.environ.get('WENXIN_API_KEY'),
  27. 'secret_key': os.environ.get('WENXIN_SECRET_KEY')
  28. },
  29. texts=['hello', '你好', 'xxxxx'],
  30. user="abc-123"
  31. )
  32. assert isinstance(response, TextEmbeddingResult)
  33. assert len(response.embeddings) == 3
  34. assert isinstance(response.embeddings[0], list)
  35. def test_invoke_embedding_bge_large_zh():
  36. sleep(3)
  37. model = WenxinTextEmbeddingModel()
  38. response = model.invoke(
  39. model='bge-large-zh',
  40. credentials={
  41. 'api_key': os.environ.get('WENXIN_API_KEY'),
  42. 'secret_key': os.environ.get('WENXIN_SECRET_KEY')
  43. },
  44. texts=['hello', '你好', 'xxxxx'],
  45. user="abc-123"
  46. )
  47. assert isinstance(response, TextEmbeddingResult)
  48. assert len(response.embeddings) == 3
  49. assert isinstance(response.embeddings[0], list)
  50. def test_invoke_embedding_tao_8k():
  51. sleep(3)
  52. model = WenxinTextEmbeddingModel()
  53. response = model.invoke(
  54. model='tao-8k',
  55. credentials={
  56. 'api_key': os.environ.get('WENXIN_API_KEY'),
  57. 'secret_key': os.environ.get('WENXIN_SECRET_KEY')
  58. },
  59. texts=['hello', '你好', 'xxxxx'],
  60. user="abc-123"
  61. )
  62. assert isinstance(response, TextEmbeddingResult)
  63. assert len(response.embeddings) == 3
  64. assert isinstance(response.embeddings[0], list)