Jyong 1e0e573165 update clean embedding cache query logic (#6483) 9 mesi fa
..
configs 2ba05b041f refactor(myscale):Set the default value of the myscale vector db in DifyConfig. (#6441) 9 mesi fa
constants 6ef401a9f0 feat:add tts-streaming config and future (#5492) 9 mesi fa
controllers afe95fa780 feat: support get workflow task execution status (#6411) 9 mesi fa
core 49ef9ef225 feat(tool): getimg.ai integration (#6260) 9 mesi fa
docker 5236cb1888 fix: kill signal is not passed to the main process (#6159) 9 mesi fa
events d320d1468d Feat/delete file when clean document (#5882) 9 mesi fa
extensions 7c397f5722 update celery beat scheduler time to env (#6352) 9 mesi fa
fields 9622fbb62f feat: app rate limit (#5844) 9 mesi fa
libs 9622fbb62f feat: app rate limit (#5844) 9 mesi fa
migrations 1e0e573165 update clean embedding cache query logic (#6483) 9 mesi fa
models 1e0e573165 update clean embedding cache query logic (#6483) 9 mesi fa
schedule 1e0e573165 update clean embedding cache query logic (#6483) 9 mesi fa
services 57729823a0 fix wrong method using (#6459) 9 mesi fa
tasks 443e96777b update empty document caused delete exist collection (#6392) 9 mesi fa
templates 00b4cc3cd4 feat: implement forgot password feature (#5534) 9 mesi fa
tests 4a026fa352 Enhancement: add model provider - Amazon Sagemaker (#6255) 9 mesi fa
.dockerignore 27f0ae8416 build: support Poetry for depencencies tool in api's Dockerfile (#5105) 10 mesi fa
.env.example 7c397f5722 update celery beat scheduler time to env (#6352) 9 mesi fa
Dockerfile 9b7c74a5d9 chore: skip pip upgrade preparation in api dockerfile (#5999) 9 mesi fa
README.md 2d6624cf9e typo: Update README.md (#5987) 9 mesi fa
app.py d7f75d17cc Chore/remove-unused-code (#5917) 9 mesi fa
commands.py 7c70eb87bc feat: support AnalyticDB vector store (#5586) 9 mesi fa
poetry.lock 4e2fba404d WebscraperTool bypass cloudflare site by cloudscraper (#6337) 9 mesi fa
poetry.toml f62f71a81a build: initial support for poetry build tool (#4513) 10 mesi fa
pyproject.toml 4e2fba404d WebscraperTool bypass cloudflare site by cloudscraper (#6337) 9 mesi fa

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   docker compose -f docker-compose.middleware.yaml -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000...
  3. If you need to debug local async processing, please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh