deal_dataset_vector_index_task.py 8.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169
  1. import logging
  2. import time
  3. import click
  4. from celery import shared_task # type: ignore
  5. from core.rag.index_processor.constant.index_type import IndexType
  6. from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
  7. from core.rag.models.document import ChildDocument, Document
  8. from extensions.ext_database import db
  9. from models.dataset import Dataset, DocumentSegment
  10. from models.dataset import Document as DatasetDocument
  11. @shared_task(queue="dataset")
  12. def deal_dataset_vector_index_task(dataset_id: str, action: str):
  13. """
  14. Async deal dataset from index
  15. :param dataset_id: dataset_id
  16. :param action: action
  17. Usage: deal_dataset_vector_index_task.delay(dataset_id, action)
  18. """
  19. logging.info(click.style("Start deal dataset vector index: {}".format(dataset_id), fg="green"))
  20. start_at = time.perf_counter()
  21. try:
  22. dataset = Dataset.query.filter_by(id=dataset_id).first()
  23. if not dataset:
  24. raise Exception("Dataset not found")
  25. index_type = dataset.doc_form or IndexType.PARAGRAPH_INDEX
  26. index_processor = IndexProcessorFactory(index_type).init_index_processor()
  27. if action == "remove":
  28. index_processor.clean(dataset, None, with_keywords=False)
  29. elif action == "add":
  30. dataset_documents = (
  31. db.session.query(DatasetDocument)
  32. .filter(
  33. DatasetDocument.dataset_id == dataset_id,
  34. DatasetDocument.indexing_status == "completed",
  35. DatasetDocument.enabled == True,
  36. DatasetDocument.archived == False,
  37. )
  38. .all()
  39. )
  40. if dataset_documents:
  41. dataset_documents_ids = [doc.id for doc in dataset_documents]
  42. db.session.query(DatasetDocument).filter(DatasetDocument.id.in_(dataset_documents_ids)).update(
  43. {"indexing_status": "indexing"}, synchronize_session=False
  44. )
  45. db.session.commit()
  46. for dataset_document in dataset_documents:
  47. try:
  48. # add from vector index
  49. segments = (
  50. db.session.query(DocumentSegment)
  51. .filter(DocumentSegment.document_id == dataset_document.id, DocumentSegment.enabled == True)
  52. .order_by(DocumentSegment.position.asc())
  53. .all()
  54. )
  55. if segments:
  56. documents = []
  57. for segment in segments:
  58. document = Document(
  59. page_content=segment.content,
  60. metadata={
  61. "doc_id": segment.index_node_id,
  62. "doc_hash": segment.index_node_hash,
  63. "document_id": segment.document_id,
  64. "dataset_id": segment.dataset_id,
  65. },
  66. )
  67. documents.append(document)
  68. # save vector index
  69. index_processor.load(dataset, documents, with_keywords=False)
  70. db.session.query(DatasetDocument).filter(DatasetDocument.id == dataset_document.id).update(
  71. {"indexing_status": "completed"}, synchronize_session=False
  72. )
  73. db.session.commit()
  74. except Exception as e:
  75. db.session.query(DatasetDocument).filter(DatasetDocument.id == dataset_document.id).update(
  76. {"indexing_status": "error", "error": str(e)}, synchronize_session=False
  77. )
  78. db.session.commit()
  79. elif action == "update":
  80. dataset_documents = (
  81. db.session.query(DatasetDocument)
  82. .filter(
  83. DatasetDocument.dataset_id == dataset_id,
  84. DatasetDocument.indexing_status == "completed",
  85. DatasetDocument.enabled == True,
  86. DatasetDocument.archived == False,
  87. )
  88. .all()
  89. )
  90. # add new index
  91. if dataset_documents:
  92. # update document status
  93. dataset_documents_ids = [doc.id for doc in dataset_documents]
  94. db.session.query(DatasetDocument).filter(DatasetDocument.id.in_(dataset_documents_ids)).update(
  95. {"indexing_status": "indexing"}, synchronize_session=False
  96. )
  97. db.session.commit()
  98. # clean index
  99. index_processor.clean(dataset, None, with_keywords=False, delete_child_chunks=False)
  100. for dataset_document in dataset_documents:
  101. # update from vector index
  102. try:
  103. segments = (
  104. db.session.query(DocumentSegment)
  105. .filter(DocumentSegment.document_id == dataset_document.id, DocumentSegment.enabled == True)
  106. .order_by(DocumentSegment.position.asc())
  107. .all()
  108. )
  109. if segments:
  110. documents = []
  111. for segment in segments:
  112. document = Document(
  113. page_content=segment.content,
  114. metadata={
  115. "doc_id": segment.index_node_id,
  116. "doc_hash": segment.index_node_hash,
  117. "document_id": segment.document_id,
  118. "dataset_id": segment.dataset_id,
  119. },
  120. )
  121. if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
  122. child_chunks = segment.child_chunks
  123. if child_chunks:
  124. child_documents = []
  125. for child_chunk in child_chunks:
  126. child_document = ChildDocument(
  127. page_content=child_chunk.content,
  128. metadata={
  129. "doc_id": child_chunk.index_node_id,
  130. "doc_hash": child_chunk.index_node_hash,
  131. "document_id": segment.document_id,
  132. "dataset_id": segment.dataset_id,
  133. },
  134. )
  135. child_documents.append(child_document)
  136. document.children = child_documents
  137. documents.append(document)
  138. # save vector index
  139. index_processor.load(dataset, documents, with_keywords=False)
  140. db.session.query(DatasetDocument).filter(DatasetDocument.id == dataset_document.id).update(
  141. {"indexing_status": "completed"}, synchronize_session=False
  142. )
  143. db.session.commit()
  144. except Exception as e:
  145. db.session.query(DatasetDocument).filter(DatasetDocument.id == dataset_document.id).update(
  146. {"indexing_status": "error", "error": str(e)}, synchronize_session=False
  147. )
  148. db.session.commit()
  149. else:
  150. # clean collection
  151. index_processor.clean(dataset, None, with_keywords=False, delete_child_chunks=False)
  152. end_at = time.perf_counter()
  153. logging.info(
  154. click.style("Deal dataset vector index: {} latency: {}".format(dataset_id, end_at - start_at), fg="green")
  155. )
  156. except Exception:
  157. logging.exception("Deal dataset vector index failed")