123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129 |
- import datetime
- import logging
- import time
- import uuid
- import click
- from celery import shared_task # type: ignore
- from sqlalchemy import func, select
- from sqlalchemy.orm import Session
- from core.model_manager import ModelManager
- from core.model_runtime.entities.model_entities import ModelType
- from extensions.ext_database import db
- from extensions.ext_redis import redis_client
- from libs import helper
- from models.dataset import Dataset, Document, DocumentSegment
- from services.vector_service import VectorService
- @shared_task(queue="dataset")
- def batch_create_segment_to_index_task(
- job_id: str,
- content: list,
- dataset_id: str,
- document_id: str,
- tenant_id: str,
- user_id: str,
- ):
- """
- Async batch create segment to index
- :param job_id:
- :param content:
- :param dataset_id:
- :param document_id:
- :param tenant_id:
- :param user_id:
- Usage: batch_create_segment_to_index_task.delay(job_id, content, dataset_id, document_id, tenant_id, user_id)
- """
- logging.info(click.style("Start batch create segment jobId: {}".format(job_id), fg="green"))
- start_at = time.perf_counter()
- indexing_cache_key = "segment_batch_import_{}".format(job_id)
- try:
- with Session(db.engine) as session:
- dataset = session.get(Dataset, dataset_id)
- if not dataset:
- raise ValueError("Dataset not exist.")
- dataset_document = session.get(Document, document_id)
- if not dataset_document:
- raise ValueError("Document not exist.")
- if (
- not dataset_document.enabled
- or dataset_document.archived
- or dataset_document.indexing_status != "completed"
- ):
- raise ValueError("Document is not available.")
- document_segments = []
- embedding_model = None
- if dataset.indexing_technique == "high_quality":
- model_manager = ModelManager()
- embedding_model = model_manager.get_model_instance(
- tenant_id=dataset.tenant_id,
- provider=dataset.embedding_model_provider,
- model_type=ModelType.TEXT_EMBEDDING,
- model=dataset.embedding_model,
- )
- word_count_change = 0
- segments_to_insert: list[str] = []
- max_position_stmt = select(func.max(DocumentSegment.position)).where(
- DocumentSegment.document_id == dataset_document.id
- )
- word_count_change = 0
- if embedding_model:
- tokens_list = embedding_model.get_text_embedding_num_tokens(
- texts=[segment["content"] for segment in content]
- )
- else:
- tokens_list = [0] * len(content)
- for segment, tokens in zip(content, tokens_list):
- content = segment["content"]
- doc_id = str(uuid.uuid4())
- segment_hash = helper.generate_text_hash(content) # type: ignore
- max_position = (
- db.session.query(func.max(DocumentSegment.position))
- .filter(DocumentSegment.document_id == dataset_document.id)
- .scalar()
- )
- segment_document = DocumentSegment(
- tenant_id=tenant_id,
- dataset_id=dataset_id,
- document_id=document_id,
- index_node_id=doc_id,
- index_node_hash=segment_hash,
- position=max_position + 1 if max_position else 1,
- content=content,
- word_count=len(content),
- tokens=tokens,
- created_by=user_id,
- indexing_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
- status="completed",
- completed_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
- )
- if dataset_document.doc_form == "qa_model":
- segment_document.answer = segment["answer"]
- segment_document.word_count += len(segment["answer"])
- word_count_change += segment_document.word_count
- db.session.add(segment_document)
- document_segments.append(segment_document)
- # update document word count
- dataset_document.word_count += word_count_change
- db.session.add(dataset_document)
- # add index to db
- VectorService.create_segments_vector(None, document_segments, dataset, dataset_document.doc_form)
- db.session.commit()
- redis_client.setex(indexing_cache_key, 600, "completed")
- end_at = time.perf_counter()
- logging.info(
- click.style(
- "Segment batch created job: {} latency: {}".format(job_id, end_at - start_at),
- fg="green",
- )
- )
- except Exception:
- logging.exception("Segments batch created index failed")
- redis_client.setex(indexing_cache_key, 600, "error")
|