fc_agent_runner.py 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434
  1. import json
  2. import logging
  3. from collections.abc import Generator
  4. from copy import deepcopy
  5. from typing import Any, Union
  6. from core.agent.base_agent_runner import BaseAgentRunner
  7. from core.app.apps.base_app_queue_manager import PublishFrom
  8. from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
  9. from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
  10. from core.model_runtime.entities.message_entities import (
  11. AssistantPromptMessage,
  12. PromptMessage,
  13. PromptMessageContentType,
  14. SystemPromptMessage,
  15. TextPromptMessageContent,
  16. ToolPromptMessage,
  17. UserPromptMessage,
  18. )
  19. from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform
  20. from core.tools.entities.tool_entities import ToolInvokeMeta
  21. from core.tools.tool_engine import ToolEngine
  22. from models.model import Message
  23. logger = logging.getLogger(__name__)
  24. class FunctionCallAgentRunner(BaseAgentRunner):
  25. def run(self,
  26. message: Message, query: str, **kwargs: Any
  27. ) -> Generator[LLMResultChunk, None, None]:
  28. """
  29. Run FunctionCall agent application
  30. """
  31. self.query = query
  32. app_generate_entity = self.application_generate_entity
  33. app_config = self.app_config
  34. # convert tools into ModelRuntime Tool format
  35. tool_instances, prompt_messages_tools = self._init_prompt_tools()
  36. iteration_step = 1
  37. max_iteration_steps = min(app_config.agent.max_iteration, 5) + 1
  38. # continue to run until there is not any tool call
  39. function_call_state = True
  40. llm_usage = {
  41. 'usage': None
  42. }
  43. final_answer = ''
  44. def increase_usage(final_llm_usage_dict: dict[str, LLMUsage], usage: LLMUsage):
  45. if not final_llm_usage_dict['usage']:
  46. final_llm_usage_dict['usage'] = usage
  47. else:
  48. llm_usage = final_llm_usage_dict['usage']
  49. llm_usage.prompt_tokens += usage.prompt_tokens
  50. llm_usage.completion_tokens += usage.completion_tokens
  51. llm_usage.prompt_price += usage.prompt_price
  52. llm_usage.completion_price += usage.completion_price
  53. model_instance = self.model_instance
  54. while function_call_state and iteration_step <= max_iteration_steps:
  55. function_call_state = False
  56. if iteration_step == max_iteration_steps:
  57. # the last iteration, remove all tools
  58. prompt_messages_tools = []
  59. message_file_ids = []
  60. agent_thought = self.create_agent_thought(
  61. message_id=message.id,
  62. message='',
  63. tool_name='',
  64. tool_input='',
  65. messages_ids=message_file_ids
  66. )
  67. # recalc llm max tokens
  68. prompt_messages = self._organize_prompt_messages()
  69. self.recalc_llm_max_tokens(self.model_config, prompt_messages)
  70. # invoke model
  71. chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = model_instance.invoke_llm(
  72. prompt_messages=prompt_messages,
  73. model_parameters=app_generate_entity.model_conf.parameters,
  74. tools=prompt_messages_tools,
  75. stop=app_generate_entity.model_conf.stop,
  76. stream=self.stream_tool_call,
  77. user=self.user_id,
  78. callbacks=[],
  79. )
  80. tool_calls: list[tuple[str, str, dict[str, Any]]] = []
  81. # save full response
  82. response = ''
  83. # save tool call names and inputs
  84. tool_call_names = ''
  85. tool_call_inputs = ''
  86. current_llm_usage = None
  87. if self.stream_tool_call:
  88. is_first_chunk = True
  89. for chunk in chunks:
  90. if is_first_chunk:
  91. self.queue_manager.publish(QueueAgentThoughtEvent(
  92. agent_thought_id=agent_thought.id
  93. ), PublishFrom.APPLICATION_MANAGER)
  94. is_first_chunk = False
  95. # check if there is any tool call
  96. if self.check_tool_calls(chunk):
  97. function_call_state = True
  98. tool_calls.extend(self.extract_tool_calls(chunk))
  99. tool_call_names = ';'.join([tool_call[1] for tool_call in tool_calls])
  100. try:
  101. tool_call_inputs = json.dumps({
  102. tool_call[1]: tool_call[2] for tool_call in tool_calls
  103. }, ensure_ascii=False)
  104. except json.JSONDecodeError as e:
  105. # ensure ascii to avoid encoding error
  106. tool_call_inputs = json.dumps({
  107. tool_call[1]: tool_call[2] for tool_call in tool_calls
  108. })
  109. if chunk.delta.message and chunk.delta.message.content:
  110. if isinstance(chunk.delta.message.content, list):
  111. for content in chunk.delta.message.content:
  112. response += content.data
  113. else:
  114. response += chunk.delta.message.content
  115. if chunk.delta.usage:
  116. increase_usage(llm_usage, chunk.delta.usage)
  117. current_llm_usage = chunk.delta.usage
  118. yield chunk
  119. else:
  120. result: LLMResult = chunks
  121. # check if there is any tool call
  122. if self.check_blocking_tool_calls(result):
  123. function_call_state = True
  124. tool_calls.extend(self.extract_blocking_tool_calls(result))
  125. tool_call_names = ';'.join([tool_call[1] for tool_call in tool_calls])
  126. try:
  127. tool_call_inputs = json.dumps({
  128. tool_call[1]: tool_call[2] for tool_call in tool_calls
  129. }, ensure_ascii=False)
  130. except json.JSONDecodeError as e:
  131. # ensure ascii to avoid encoding error
  132. tool_call_inputs = json.dumps({
  133. tool_call[1]: tool_call[2] for tool_call in tool_calls
  134. })
  135. if result.usage:
  136. increase_usage(llm_usage, result.usage)
  137. current_llm_usage = result.usage
  138. if result.message and result.message.content:
  139. if isinstance(result.message.content, list):
  140. for content in result.message.content:
  141. response += content.data
  142. else:
  143. response += result.message.content
  144. if not result.message.content:
  145. result.message.content = ''
  146. self.queue_manager.publish(QueueAgentThoughtEvent(
  147. agent_thought_id=agent_thought.id
  148. ), PublishFrom.APPLICATION_MANAGER)
  149. yield LLMResultChunk(
  150. model=model_instance.model,
  151. prompt_messages=result.prompt_messages,
  152. system_fingerprint=result.system_fingerprint,
  153. delta=LLMResultChunkDelta(
  154. index=0,
  155. message=result.message,
  156. usage=result.usage,
  157. )
  158. )
  159. assistant_message = AssistantPromptMessage(
  160. content='',
  161. tool_calls=[]
  162. )
  163. if tool_calls:
  164. assistant_message.tool_calls=[
  165. AssistantPromptMessage.ToolCall(
  166. id=tool_call[0],
  167. type='function',
  168. function=AssistantPromptMessage.ToolCall.ToolCallFunction(
  169. name=tool_call[1],
  170. arguments=json.dumps(tool_call[2], ensure_ascii=False)
  171. )
  172. ) for tool_call in tool_calls
  173. ]
  174. else:
  175. assistant_message.content = response
  176. self._current_thoughts.append(assistant_message)
  177. # save thought
  178. self.save_agent_thought(
  179. agent_thought=agent_thought,
  180. tool_name=tool_call_names,
  181. tool_input=tool_call_inputs,
  182. thought=response,
  183. tool_invoke_meta=None,
  184. observation=None,
  185. answer=response,
  186. messages_ids=[],
  187. llm_usage=current_llm_usage
  188. )
  189. self.queue_manager.publish(QueueAgentThoughtEvent(
  190. agent_thought_id=agent_thought.id
  191. ), PublishFrom.APPLICATION_MANAGER)
  192. final_answer += response + '\n'
  193. # call tools
  194. tool_responses = []
  195. for tool_call_id, tool_call_name, tool_call_args in tool_calls:
  196. tool_instance = tool_instances.get(tool_call_name)
  197. if not tool_instance:
  198. tool_response = {
  199. "tool_call_id": tool_call_id,
  200. "tool_call_name": tool_call_name,
  201. "tool_response": f"there is not a tool named {tool_call_name}",
  202. "meta": ToolInvokeMeta.error_instance(f"there is not a tool named {tool_call_name}").to_dict()
  203. }
  204. else:
  205. # invoke tool
  206. tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
  207. tool=tool_instance,
  208. tool_parameters=tool_call_args,
  209. user_id=self.user_id,
  210. tenant_id=self.tenant_id,
  211. message=self.message,
  212. invoke_from=self.application_generate_entity.invoke_from,
  213. agent_tool_callback=self.agent_callback,
  214. )
  215. # publish files
  216. for message_file, save_as in message_files:
  217. if save_as:
  218. self.variables_pool.set_file(tool_name=tool_call_name, value=message_file.id, name=save_as)
  219. # publish message file
  220. self.queue_manager.publish(QueueMessageFileEvent(
  221. message_file_id=message_file.id
  222. ), PublishFrom.APPLICATION_MANAGER)
  223. # add message file ids
  224. message_file_ids.append(message_file.id)
  225. tool_response = {
  226. "tool_call_id": tool_call_id,
  227. "tool_call_name": tool_call_name,
  228. "tool_response": tool_invoke_response,
  229. "meta": tool_invoke_meta.to_dict()
  230. }
  231. tool_responses.append(tool_response)
  232. if tool_response['tool_response'] is not None:
  233. self._current_thoughts.append(
  234. ToolPromptMessage(
  235. content=tool_response['tool_response'],
  236. tool_call_id=tool_call_id,
  237. name=tool_call_name,
  238. )
  239. )
  240. if len(tool_responses) > 0:
  241. # save agent thought
  242. self.save_agent_thought(
  243. agent_thought=agent_thought,
  244. tool_name=None,
  245. tool_input=None,
  246. thought=None,
  247. tool_invoke_meta={
  248. tool_response['tool_call_name']: tool_response['meta']
  249. for tool_response in tool_responses
  250. },
  251. observation={
  252. tool_response['tool_call_name']: tool_response['tool_response']
  253. for tool_response in tool_responses
  254. },
  255. answer=None,
  256. messages_ids=message_file_ids
  257. )
  258. self.queue_manager.publish(QueueAgentThoughtEvent(
  259. agent_thought_id=agent_thought.id
  260. ), PublishFrom.APPLICATION_MANAGER)
  261. # update prompt tool
  262. for prompt_tool in prompt_messages_tools:
  263. self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
  264. iteration_step += 1
  265. self.update_db_variables(self.variables_pool, self.db_variables_pool)
  266. # publish end event
  267. self.queue_manager.publish(QueueMessageEndEvent(llm_result=LLMResult(
  268. model=model_instance.model,
  269. prompt_messages=prompt_messages,
  270. message=AssistantPromptMessage(
  271. content=final_answer
  272. ),
  273. usage=llm_usage['usage'] if llm_usage['usage'] else LLMUsage.empty_usage(),
  274. system_fingerprint=''
  275. )), PublishFrom.APPLICATION_MANAGER)
  276. def check_tool_calls(self, llm_result_chunk: LLMResultChunk) -> bool:
  277. """
  278. Check if there is any tool call in llm result chunk
  279. """
  280. if llm_result_chunk.delta.message.tool_calls:
  281. return True
  282. return False
  283. def check_blocking_tool_calls(self, llm_result: LLMResult) -> bool:
  284. """
  285. Check if there is any blocking tool call in llm result
  286. """
  287. if llm_result.message.tool_calls:
  288. return True
  289. return False
  290. def extract_tool_calls(self, llm_result_chunk: LLMResultChunk) -> Union[None, list[tuple[str, str, dict[str, Any]]]]:
  291. """
  292. Extract tool calls from llm result chunk
  293. Returns:
  294. List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
  295. """
  296. tool_calls = []
  297. for prompt_message in llm_result_chunk.delta.message.tool_calls:
  298. tool_calls.append((
  299. prompt_message.id,
  300. prompt_message.function.name,
  301. json.loads(prompt_message.function.arguments),
  302. ))
  303. return tool_calls
  304. def extract_blocking_tool_calls(self, llm_result: LLMResult) -> Union[None, list[tuple[str, str, dict[str, Any]]]]:
  305. """
  306. Extract blocking tool calls from llm result
  307. Returns:
  308. List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
  309. """
  310. tool_calls = []
  311. for prompt_message in llm_result.message.tool_calls:
  312. tool_calls.append((
  313. prompt_message.id,
  314. prompt_message.function.name,
  315. json.loads(prompt_message.function.arguments),
  316. ))
  317. return tool_calls
  318. def _init_system_message(self, prompt_template: str, prompt_messages: list[PromptMessage] = None) -> list[PromptMessage]:
  319. """
  320. Initialize system message
  321. """
  322. if not prompt_messages and prompt_template:
  323. return [
  324. SystemPromptMessage(content=prompt_template),
  325. ]
  326. if prompt_messages and not isinstance(prompt_messages[0], SystemPromptMessage) and prompt_template:
  327. prompt_messages.insert(0, SystemPromptMessage(content=prompt_template))
  328. return prompt_messages
  329. def _organize_user_query(self, query, prompt_messages: list[PromptMessage] = None) -> list[PromptMessage]:
  330. """
  331. Organize user query
  332. """
  333. if self.files:
  334. prompt_message_contents = [TextPromptMessageContent(data=query)]
  335. for file_obj in self.files:
  336. prompt_message_contents.append(file_obj.prompt_message_content)
  337. prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
  338. else:
  339. prompt_messages.append(UserPromptMessage(content=query))
  340. return prompt_messages
  341. def _clear_user_prompt_image_messages(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
  342. """
  343. As for now, gpt supports both fc and vision at the first iteration.
  344. We need to remove the image messages from the prompt messages at the first iteration.
  345. """
  346. prompt_messages = deepcopy(prompt_messages)
  347. for prompt_message in prompt_messages:
  348. if isinstance(prompt_message, UserPromptMessage):
  349. if isinstance(prompt_message.content, list):
  350. prompt_message.content = '\n'.join([
  351. content.data if content.type == PromptMessageContentType.TEXT else
  352. '[image]' if content.type == PromptMessageContentType.IMAGE else
  353. '[file]'
  354. for content in prompt_message.content
  355. ])
  356. return prompt_messages
  357. def _organize_prompt_messages(self):
  358. prompt_template = self.app_config.prompt_template.simple_prompt_template or ''
  359. self.history_prompt_messages = self._init_system_message(prompt_template, self.history_prompt_messages)
  360. query_prompt_messages = self._organize_user_query(self.query, [])
  361. self.history_prompt_messages = AgentHistoryPromptTransform(
  362. model_config=self.model_config,
  363. prompt_messages=[*query_prompt_messages, *self._current_thoughts],
  364. history_messages=self.history_prompt_messages,
  365. memory=self.memory
  366. ).get_prompt()
  367. prompt_messages = [
  368. *self.history_prompt_messages,
  369. *query_prompt_messages,
  370. *self._current_thoughts
  371. ]
  372. if len(self._current_thoughts) != 0:
  373. # clear messages after the first iteration
  374. prompt_messages = self._clear_user_prompt_image_messages(prompt_messages)
  375. return prompt_messages