cot_agent_runner.py 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440
  1. import json
  2. from abc import ABC, abstractmethod
  3. from collections.abc import Generator
  4. from typing import Union
  5. from core.agent.base_agent_runner import BaseAgentRunner
  6. from core.agent.entities import AgentScratchpadUnit
  7. from core.agent.output_parser.cot_output_parser import CotAgentOutputParser
  8. from core.app.apps.base_app_queue_manager import PublishFrom
  9. from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
  10. from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
  11. from core.model_runtime.entities.message_entities import (
  12. AssistantPromptMessage,
  13. PromptMessage,
  14. ToolPromptMessage,
  15. UserPromptMessage,
  16. )
  17. from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform
  18. from core.tools.entities.tool_entities import ToolInvokeMeta
  19. from core.tools.tool.tool import Tool
  20. from core.tools.tool_engine import ToolEngine
  21. from models.model import Message
  22. class CotAgentRunner(BaseAgentRunner, ABC):
  23. _is_first_iteration = True
  24. _ignore_observation_providers = ['wenxin']
  25. _historic_prompt_messages: list[PromptMessage] = None
  26. _agent_scratchpad: list[AgentScratchpadUnit] = None
  27. _instruction: str = None
  28. _query: str = None
  29. _prompt_messages_tools: list[PromptMessage] = None
  30. def run(self, message: Message,
  31. query: str,
  32. inputs: dict[str, str],
  33. ) -> Union[Generator, LLMResult]:
  34. """
  35. Run Cot agent application
  36. """
  37. app_generate_entity = self.application_generate_entity
  38. self._repack_app_generate_entity(app_generate_entity)
  39. self._init_react_state(query)
  40. # check model mode
  41. if 'Observation' not in app_generate_entity.model_conf.stop:
  42. if app_generate_entity.model_conf.provider not in self._ignore_observation_providers:
  43. app_generate_entity.model_conf.stop.append('Observation')
  44. app_config = self.app_config
  45. # init instruction
  46. inputs = inputs or {}
  47. instruction = app_config.prompt_template.simple_prompt_template
  48. self._instruction = self._fill_in_inputs_from_external_data_tools(
  49. instruction, inputs)
  50. iteration_step = 1
  51. max_iteration_steps = min(app_config.agent.max_iteration, 5) + 1
  52. # convert tools into ModelRuntime Tool format
  53. tool_instances, self._prompt_messages_tools = self._init_prompt_tools()
  54. function_call_state = True
  55. llm_usage = {
  56. 'usage': None
  57. }
  58. final_answer = ''
  59. def increase_usage(final_llm_usage_dict: dict[str, LLMUsage], usage: LLMUsage):
  60. if not final_llm_usage_dict['usage']:
  61. final_llm_usage_dict['usage'] = usage
  62. else:
  63. llm_usage = final_llm_usage_dict['usage']
  64. llm_usage.prompt_tokens += usage.prompt_tokens
  65. llm_usage.completion_tokens += usage.completion_tokens
  66. llm_usage.prompt_price += usage.prompt_price
  67. llm_usage.completion_price += usage.completion_price
  68. model_instance = self.model_instance
  69. while function_call_state and iteration_step <= max_iteration_steps:
  70. # continue to run until there is not any tool call
  71. function_call_state = False
  72. if iteration_step == max_iteration_steps:
  73. # the last iteration, remove all tools
  74. self._prompt_messages_tools = []
  75. message_file_ids = []
  76. agent_thought = self.create_agent_thought(
  77. message_id=message.id,
  78. message='',
  79. tool_name='',
  80. tool_input='',
  81. messages_ids=message_file_ids
  82. )
  83. if iteration_step > 1:
  84. self.queue_manager.publish(QueueAgentThoughtEvent(
  85. agent_thought_id=agent_thought.id
  86. ), PublishFrom.APPLICATION_MANAGER)
  87. # recalc llm max tokens
  88. prompt_messages = self._organize_prompt_messages()
  89. self.recalc_llm_max_tokens(self.model_config, prompt_messages)
  90. # invoke model
  91. chunks: Generator[LLMResultChunk, None, None] = model_instance.invoke_llm(
  92. prompt_messages=prompt_messages,
  93. model_parameters=app_generate_entity.model_conf.parameters,
  94. tools=[],
  95. stop=app_generate_entity.model_conf.stop,
  96. stream=True,
  97. user=self.user_id,
  98. callbacks=[],
  99. )
  100. # check llm result
  101. if not chunks:
  102. raise ValueError("failed to invoke llm")
  103. usage_dict = {}
  104. react_chunks = CotAgentOutputParser.handle_react_stream_output(
  105. chunks, usage_dict)
  106. scratchpad = AgentScratchpadUnit(
  107. agent_response='',
  108. thought='',
  109. action_str='',
  110. observation='',
  111. action=None,
  112. )
  113. # publish agent thought if it's first iteration
  114. if iteration_step == 1:
  115. self.queue_manager.publish(QueueAgentThoughtEvent(
  116. agent_thought_id=agent_thought.id
  117. ), PublishFrom.APPLICATION_MANAGER)
  118. for chunk in react_chunks:
  119. if isinstance(chunk, AgentScratchpadUnit.Action):
  120. action = chunk
  121. # detect action
  122. scratchpad.agent_response += json.dumps(chunk.model_dump())
  123. scratchpad.action_str = json.dumps(chunk.model_dump())
  124. scratchpad.action = action
  125. else:
  126. scratchpad.agent_response += chunk
  127. scratchpad.thought += chunk
  128. yield LLMResultChunk(
  129. model=self.model_config.model,
  130. prompt_messages=prompt_messages,
  131. system_fingerprint='',
  132. delta=LLMResultChunkDelta(
  133. index=0,
  134. message=AssistantPromptMessage(
  135. content=chunk
  136. ),
  137. usage=None
  138. )
  139. )
  140. scratchpad.thought = scratchpad.thought.strip(
  141. ) or 'I am thinking about how to help you'
  142. self._agent_scratchpad.append(scratchpad)
  143. # get llm usage
  144. if 'usage' in usage_dict:
  145. increase_usage(llm_usage, usage_dict['usage'])
  146. else:
  147. usage_dict['usage'] = LLMUsage.empty_usage()
  148. self.save_agent_thought(
  149. agent_thought=agent_thought,
  150. tool_name=scratchpad.action.action_name if scratchpad.action else '',
  151. tool_input={
  152. scratchpad.action.action_name: scratchpad.action.action_input
  153. } if scratchpad.action else {},
  154. tool_invoke_meta={},
  155. thought=scratchpad.thought,
  156. observation='',
  157. answer=scratchpad.agent_response,
  158. messages_ids=[],
  159. llm_usage=usage_dict['usage']
  160. )
  161. if not scratchpad.is_final():
  162. self.queue_manager.publish(QueueAgentThoughtEvent(
  163. agent_thought_id=agent_thought.id
  164. ), PublishFrom.APPLICATION_MANAGER)
  165. if not scratchpad.action:
  166. # failed to extract action, return final answer directly
  167. final_answer = ''
  168. else:
  169. if scratchpad.action.action_name.lower() == "final answer":
  170. # action is final answer, return final answer directly
  171. try:
  172. if isinstance(scratchpad.action.action_input, dict):
  173. final_answer = json.dumps(
  174. scratchpad.action.action_input)
  175. elif isinstance(scratchpad.action.action_input, str):
  176. final_answer = scratchpad.action.action_input
  177. else:
  178. final_answer = f'{scratchpad.action.action_input}'
  179. except json.JSONDecodeError:
  180. final_answer = f'{scratchpad.action.action_input}'
  181. else:
  182. function_call_state = True
  183. # action is tool call, invoke tool
  184. tool_invoke_response, tool_invoke_meta = self._handle_invoke_action(
  185. action=scratchpad.action,
  186. tool_instances=tool_instances,
  187. message_file_ids=message_file_ids
  188. )
  189. scratchpad.observation = tool_invoke_response
  190. scratchpad.agent_response = tool_invoke_response
  191. self.save_agent_thought(
  192. agent_thought=agent_thought,
  193. tool_name=scratchpad.action.action_name,
  194. tool_input={
  195. scratchpad.action.action_name: scratchpad.action.action_input},
  196. thought=scratchpad.thought,
  197. observation={
  198. scratchpad.action.action_name: tool_invoke_response},
  199. tool_invoke_meta={
  200. scratchpad.action.action_name: tool_invoke_meta.to_dict()},
  201. answer=scratchpad.agent_response,
  202. messages_ids=message_file_ids,
  203. llm_usage=usage_dict['usage']
  204. )
  205. self.queue_manager.publish(QueueAgentThoughtEvent(
  206. agent_thought_id=agent_thought.id
  207. ), PublishFrom.APPLICATION_MANAGER)
  208. # update prompt tool message
  209. for prompt_tool in self._prompt_messages_tools:
  210. self.update_prompt_message_tool(
  211. tool_instances[prompt_tool.name], prompt_tool)
  212. iteration_step += 1
  213. yield LLMResultChunk(
  214. model=model_instance.model,
  215. prompt_messages=prompt_messages,
  216. delta=LLMResultChunkDelta(
  217. index=0,
  218. message=AssistantPromptMessage(
  219. content=final_answer
  220. ),
  221. usage=llm_usage['usage']
  222. ),
  223. system_fingerprint=''
  224. )
  225. # save agent thought
  226. self.save_agent_thought(
  227. agent_thought=agent_thought,
  228. tool_name='',
  229. tool_input={},
  230. tool_invoke_meta={},
  231. thought=final_answer,
  232. observation={},
  233. answer=final_answer,
  234. messages_ids=[]
  235. )
  236. self.update_db_variables(self.variables_pool, self.db_variables_pool)
  237. # publish end event
  238. self.queue_manager.publish(QueueMessageEndEvent(llm_result=LLMResult(
  239. model=model_instance.model,
  240. prompt_messages=prompt_messages,
  241. message=AssistantPromptMessage(
  242. content=final_answer
  243. ),
  244. usage=llm_usage['usage'] if llm_usage['usage'] else LLMUsage.empty_usage(
  245. ),
  246. system_fingerprint=''
  247. )), PublishFrom.APPLICATION_MANAGER)
  248. def _handle_invoke_action(self, action: AgentScratchpadUnit.Action,
  249. tool_instances: dict[str, Tool],
  250. message_file_ids: list[str]) -> tuple[str, ToolInvokeMeta]:
  251. """
  252. handle invoke action
  253. :param action: action
  254. :param tool_instances: tool instances
  255. :return: observation, meta
  256. """
  257. # action is tool call, invoke tool
  258. tool_call_name = action.action_name
  259. tool_call_args = action.action_input
  260. tool_instance = tool_instances.get(tool_call_name)
  261. if not tool_instance:
  262. answer = f"there is not a tool named {tool_call_name}"
  263. return answer, ToolInvokeMeta.error_instance(answer)
  264. if isinstance(tool_call_args, str):
  265. try:
  266. tool_call_args = json.loads(tool_call_args)
  267. except json.JSONDecodeError:
  268. pass
  269. # invoke tool
  270. tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
  271. tool=tool_instance,
  272. tool_parameters=tool_call_args,
  273. user_id=self.user_id,
  274. tenant_id=self.tenant_id,
  275. message=self.message,
  276. invoke_from=self.application_generate_entity.invoke_from,
  277. agent_tool_callback=self.agent_callback
  278. )
  279. # publish files
  280. for message_file, save_as in message_files:
  281. if save_as:
  282. self.variables_pool.set_file(
  283. tool_name=tool_call_name, value=message_file.id, name=save_as)
  284. # publish message file
  285. self.queue_manager.publish(QueueMessageFileEvent(
  286. message_file_id=message_file.id
  287. ), PublishFrom.APPLICATION_MANAGER)
  288. # add message file ids
  289. message_file_ids.append(message_file.id)
  290. return tool_invoke_response, tool_invoke_meta
  291. def _convert_dict_to_action(self, action: dict) -> AgentScratchpadUnit.Action:
  292. """
  293. convert dict to action
  294. """
  295. return AgentScratchpadUnit.Action(
  296. action_name=action['action'],
  297. action_input=action['action_input']
  298. )
  299. def _fill_in_inputs_from_external_data_tools(self, instruction: str, inputs: dict) -> str:
  300. """
  301. fill in inputs from external data tools
  302. """
  303. for key, value in inputs.items():
  304. try:
  305. instruction = instruction.replace(f'{{{{{key}}}}}', str(value))
  306. except Exception as e:
  307. continue
  308. return instruction
  309. def _init_react_state(self, query) -> None:
  310. """
  311. init agent scratchpad
  312. """
  313. self._query = query
  314. self._agent_scratchpad = []
  315. self._historic_prompt_messages = self._organize_historic_prompt_messages()
  316. @abstractmethod
  317. def _organize_prompt_messages(self) -> list[PromptMessage]:
  318. """
  319. organize prompt messages
  320. """
  321. def _format_assistant_message(self, agent_scratchpad: list[AgentScratchpadUnit]) -> str:
  322. """
  323. format assistant message
  324. """
  325. message = ''
  326. for scratchpad in agent_scratchpad:
  327. if scratchpad.is_final():
  328. message += f"Final Answer: {scratchpad.agent_response}"
  329. else:
  330. message += f"Thought: {scratchpad.thought}\n\n"
  331. if scratchpad.action_str:
  332. message += f"Action: {scratchpad.action_str}\n\n"
  333. if scratchpad.observation:
  334. message += f"Observation: {scratchpad.observation}\n\n"
  335. return message
  336. def _organize_historic_prompt_messages(self, current_session_messages: list[PromptMessage] = None) -> list[PromptMessage]:
  337. """
  338. organize historic prompt messages
  339. """
  340. result: list[PromptMessage] = []
  341. scratchpads: list[AgentScratchpadUnit] = []
  342. current_scratchpad: AgentScratchpadUnit = None
  343. for message in self.history_prompt_messages:
  344. if isinstance(message, AssistantPromptMessage):
  345. if not current_scratchpad:
  346. current_scratchpad = AgentScratchpadUnit(
  347. agent_response=message.content,
  348. thought=message.content or 'I am thinking about how to help you',
  349. action_str='',
  350. action=None,
  351. observation=None,
  352. )
  353. scratchpads.append(current_scratchpad)
  354. if message.tool_calls:
  355. try:
  356. current_scratchpad.action = AgentScratchpadUnit.Action(
  357. action_name=message.tool_calls[0].function.name,
  358. action_input=json.loads(
  359. message.tool_calls[0].function.arguments)
  360. )
  361. current_scratchpad.action_str = json.dumps(
  362. current_scratchpad.action.to_dict()
  363. )
  364. except:
  365. pass
  366. elif isinstance(message, ToolPromptMessage):
  367. if current_scratchpad:
  368. current_scratchpad.observation = message.content
  369. elif isinstance(message, UserPromptMessage):
  370. if scratchpads:
  371. result.append(AssistantPromptMessage(
  372. content=self._format_assistant_message(scratchpads)
  373. ))
  374. scratchpads = []
  375. current_scratchpad = None
  376. result.append(message)
  377. if scratchpads:
  378. result.append(AssistantPromptMessage(
  379. content=self._format_assistant_message(scratchpads)
  380. ))
  381. historic_prompts = AgentHistoryPromptTransform(
  382. model_config=self.model_config,
  383. prompt_messages=current_session_messages or [],
  384. history_messages=result,
  385. memory=self.memory
  386. ).get_prompt()
  387. return historic_prompts