123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440 |
- import json
- from abc import ABC, abstractmethod
- from collections.abc import Generator
- from typing import Union
- from core.agent.base_agent_runner import BaseAgentRunner
- from core.agent.entities import AgentScratchpadUnit
- from core.agent.output_parser.cot_output_parser import CotAgentOutputParser
- from core.app.apps.base_app_queue_manager import PublishFrom
- from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
- from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
- from core.model_runtime.entities.message_entities import (
- AssistantPromptMessage,
- PromptMessage,
- ToolPromptMessage,
- UserPromptMessage,
- )
- from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform
- from core.tools.entities.tool_entities import ToolInvokeMeta
- from core.tools.tool.tool import Tool
- from core.tools.tool_engine import ToolEngine
- from models.model import Message
- class CotAgentRunner(BaseAgentRunner, ABC):
- _is_first_iteration = True
- _ignore_observation_providers = ['wenxin']
- _historic_prompt_messages: list[PromptMessage] = None
- _agent_scratchpad: list[AgentScratchpadUnit] = None
- _instruction: str = None
- _query: str = None
- _prompt_messages_tools: list[PromptMessage] = None
- def run(self, message: Message,
- query: str,
- inputs: dict[str, str],
- ) -> Union[Generator, LLMResult]:
- """
- Run Cot agent application
- """
- app_generate_entity = self.application_generate_entity
- self._repack_app_generate_entity(app_generate_entity)
- self._init_react_state(query)
- # check model mode
- if 'Observation' not in app_generate_entity.model_conf.stop:
- if app_generate_entity.model_conf.provider not in self._ignore_observation_providers:
- app_generate_entity.model_conf.stop.append('Observation')
- app_config = self.app_config
- # init instruction
- inputs = inputs or {}
- instruction = app_config.prompt_template.simple_prompt_template
- self._instruction = self._fill_in_inputs_from_external_data_tools(
- instruction, inputs)
- iteration_step = 1
- max_iteration_steps = min(app_config.agent.max_iteration, 5) + 1
- # convert tools into ModelRuntime Tool format
- tool_instances, self._prompt_messages_tools = self._init_prompt_tools()
- function_call_state = True
- llm_usage = {
- 'usage': None
- }
- final_answer = ''
- def increase_usage(final_llm_usage_dict: dict[str, LLMUsage], usage: LLMUsage):
- if not final_llm_usage_dict['usage']:
- final_llm_usage_dict['usage'] = usage
- else:
- llm_usage = final_llm_usage_dict['usage']
- llm_usage.prompt_tokens += usage.prompt_tokens
- llm_usage.completion_tokens += usage.completion_tokens
- llm_usage.prompt_price += usage.prompt_price
- llm_usage.completion_price += usage.completion_price
- model_instance = self.model_instance
- while function_call_state and iteration_step <= max_iteration_steps:
- # continue to run until there is not any tool call
- function_call_state = False
- if iteration_step == max_iteration_steps:
- # the last iteration, remove all tools
- self._prompt_messages_tools = []
- message_file_ids = []
- agent_thought = self.create_agent_thought(
- message_id=message.id,
- message='',
- tool_name='',
- tool_input='',
- messages_ids=message_file_ids
- )
- if iteration_step > 1:
- self.queue_manager.publish(QueueAgentThoughtEvent(
- agent_thought_id=agent_thought.id
- ), PublishFrom.APPLICATION_MANAGER)
- # recalc llm max tokens
- prompt_messages = self._organize_prompt_messages()
- self.recalc_llm_max_tokens(self.model_config, prompt_messages)
- # invoke model
- chunks: Generator[LLMResultChunk, None, None] = model_instance.invoke_llm(
- prompt_messages=prompt_messages,
- model_parameters=app_generate_entity.model_conf.parameters,
- tools=[],
- stop=app_generate_entity.model_conf.stop,
- stream=True,
- user=self.user_id,
- callbacks=[],
- )
- # check llm result
- if not chunks:
- raise ValueError("failed to invoke llm")
- usage_dict = {}
- react_chunks = CotAgentOutputParser.handle_react_stream_output(
- chunks, usage_dict)
- scratchpad = AgentScratchpadUnit(
- agent_response='',
- thought='',
- action_str='',
- observation='',
- action=None,
- )
- # publish agent thought if it's first iteration
- if iteration_step == 1:
- self.queue_manager.publish(QueueAgentThoughtEvent(
- agent_thought_id=agent_thought.id
- ), PublishFrom.APPLICATION_MANAGER)
- for chunk in react_chunks:
- if isinstance(chunk, AgentScratchpadUnit.Action):
- action = chunk
- # detect action
- scratchpad.agent_response += json.dumps(chunk.model_dump())
- scratchpad.action_str = json.dumps(chunk.model_dump())
- scratchpad.action = action
- else:
- scratchpad.agent_response += chunk
- scratchpad.thought += chunk
- yield LLMResultChunk(
- model=self.model_config.model,
- prompt_messages=prompt_messages,
- system_fingerprint='',
- delta=LLMResultChunkDelta(
- index=0,
- message=AssistantPromptMessage(
- content=chunk
- ),
- usage=None
- )
- )
- scratchpad.thought = scratchpad.thought.strip(
- ) or 'I am thinking about how to help you'
- self._agent_scratchpad.append(scratchpad)
- # get llm usage
- if 'usage' in usage_dict:
- increase_usage(llm_usage, usage_dict['usage'])
- else:
- usage_dict['usage'] = LLMUsage.empty_usage()
- self.save_agent_thought(
- agent_thought=agent_thought,
- tool_name=scratchpad.action.action_name if scratchpad.action else '',
- tool_input={
- scratchpad.action.action_name: scratchpad.action.action_input
- } if scratchpad.action else {},
- tool_invoke_meta={},
- thought=scratchpad.thought,
- observation='',
- answer=scratchpad.agent_response,
- messages_ids=[],
- llm_usage=usage_dict['usage']
- )
- if not scratchpad.is_final():
- self.queue_manager.publish(QueueAgentThoughtEvent(
- agent_thought_id=agent_thought.id
- ), PublishFrom.APPLICATION_MANAGER)
- if not scratchpad.action:
- # failed to extract action, return final answer directly
- final_answer = ''
- else:
- if scratchpad.action.action_name.lower() == "final answer":
- # action is final answer, return final answer directly
- try:
- if isinstance(scratchpad.action.action_input, dict):
- final_answer = json.dumps(
- scratchpad.action.action_input)
- elif isinstance(scratchpad.action.action_input, str):
- final_answer = scratchpad.action.action_input
- else:
- final_answer = f'{scratchpad.action.action_input}'
- except json.JSONDecodeError:
- final_answer = f'{scratchpad.action.action_input}'
- else:
- function_call_state = True
- # action is tool call, invoke tool
- tool_invoke_response, tool_invoke_meta = self._handle_invoke_action(
- action=scratchpad.action,
- tool_instances=tool_instances,
- message_file_ids=message_file_ids
- )
- scratchpad.observation = tool_invoke_response
- scratchpad.agent_response = tool_invoke_response
- self.save_agent_thought(
- agent_thought=agent_thought,
- tool_name=scratchpad.action.action_name,
- tool_input={
- scratchpad.action.action_name: scratchpad.action.action_input},
- thought=scratchpad.thought,
- observation={
- scratchpad.action.action_name: tool_invoke_response},
- tool_invoke_meta={
- scratchpad.action.action_name: tool_invoke_meta.to_dict()},
- answer=scratchpad.agent_response,
- messages_ids=message_file_ids,
- llm_usage=usage_dict['usage']
- )
- self.queue_manager.publish(QueueAgentThoughtEvent(
- agent_thought_id=agent_thought.id
- ), PublishFrom.APPLICATION_MANAGER)
- # update prompt tool message
- for prompt_tool in self._prompt_messages_tools:
- self.update_prompt_message_tool(
- tool_instances[prompt_tool.name], prompt_tool)
- iteration_step += 1
- yield LLMResultChunk(
- model=model_instance.model,
- prompt_messages=prompt_messages,
- delta=LLMResultChunkDelta(
- index=0,
- message=AssistantPromptMessage(
- content=final_answer
- ),
- usage=llm_usage['usage']
- ),
- system_fingerprint=''
- )
- # save agent thought
- self.save_agent_thought(
- agent_thought=agent_thought,
- tool_name='',
- tool_input={},
- tool_invoke_meta={},
- thought=final_answer,
- observation={},
- answer=final_answer,
- messages_ids=[]
- )
- self.update_db_variables(self.variables_pool, self.db_variables_pool)
- # publish end event
- self.queue_manager.publish(QueueMessageEndEvent(llm_result=LLMResult(
- model=model_instance.model,
- prompt_messages=prompt_messages,
- message=AssistantPromptMessage(
- content=final_answer
- ),
- usage=llm_usage['usage'] if llm_usage['usage'] else LLMUsage.empty_usage(
- ),
- system_fingerprint=''
- )), PublishFrom.APPLICATION_MANAGER)
- def _handle_invoke_action(self, action: AgentScratchpadUnit.Action,
- tool_instances: dict[str, Tool],
- message_file_ids: list[str]) -> tuple[str, ToolInvokeMeta]:
- """
- handle invoke action
- :param action: action
- :param tool_instances: tool instances
- :return: observation, meta
- """
- # action is tool call, invoke tool
- tool_call_name = action.action_name
- tool_call_args = action.action_input
- tool_instance = tool_instances.get(tool_call_name)
- if not tool_instance:
- answer = f"there is not a tool named {tool_call_name}"
- return answer, ToolInvokeMeta.error_instance(answer)
- if isinstance(tool_call_args, str):
- try:
- tool_call_args = json.loads(tool_call_args)
- except json.JSONDecodeError:
- pass
- # invoke tool
- tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
- tool=tool_instance,
- tool_parameters=tool_call_args,
- user_id=self.user_id,
- tenant_id=self.tenant_id,
- message=self.message,
- invoke_from=self.application_generate_entity.invoke_from,
- agent_tool_callback=self.agent_callback
- )
- # publish files
- for message_file, save_as in message_files:
- if save_as:
- self.variables_pool.set_file(
- tool_name=tool_call_name, value=message_file.id, name=save_as)
- # publish message file
- self.queue_manager.publish(QueueMessageFileEvent(
- message_file_id=message_file.id
- ), PublishFrom.APPLICATION_MANAGER)
- # add message file ids
- message_file_ids.append(message_file.id)
- return tool_invoke_response, tool_invoke_meta
- def _convert_dict_to_action(self, action: dict) -> AgentScratchpadUnit.Action:
- """
- convert dict to action
- """
- return AgentScratchpadUnit.Action(
- action_name=action['action'],
- action_input=action['action_input']
- )
- def _fill_in_inputs_from_external_data_tools(self, instruction: str, inputs: dict) -> str:
- """
- fill in inputs from external data tools
- """
- for key, value in inputs.items():
- try:
- instruction = instruction.replace(f'{{{{{key}}}}}', str(value))
- except Exception as e:
- continue
- return instruction
- def _init_react_state(self, query) -> None:
- """
- init agent scratchpad
- """
- self._query = query
- self._agent_scratchpad = []
- self._historic_prompt_messages = self._organize_historic_prompt_messages()
- @abstractmethod
- def _organize_prompt_messages(self) -> list[PromptMessage]:
- """
- organize prompt messages
- """
- def _format_assistant_message(self, agent_scratchpad: list[AgentScratchpadUnit]) -> str:
- """
- format assistant message
- """
- message = ''
- for scratchpad in agent_scratchpad:
- if scratchpad.is_final():
- message += f"Final Answer: {scratchpad.agent_response}"
- else:
- message += f"Thought: {scratchpad.thought}\n\n"
- if scratchpad.action_str:
- message += f"Action: {scratchpad.action_str}\n\n"
- if scratchpad.observation:
- message += f"Observation: {scratchpad.observation}\n\n"
- return message
- def _organize_historic_prompt_messages(self, current_session_messages: list[PromptMessage] = None) -> list[PromptMessage]:
- """
- organize historic prompt messages
- """
- result: list[PromptMessage] = []
- scratchpads: list[AgentScratchpadUnit] = []
- current_scratchpad: AgentScratchpadUnit = None
- for message in self.history_prompt_messages:
- if isinstance(message, AssistantPromptMessage):
- if not current_scratchpad:
- current_scratchpad = AgentScratchpadUnit(
- agent_response=message.content,
- thought=message.content or 'I am thinking about how to help you',
- action_str='',
- action=None,
- observation=None,
- )
- scratchpads.append(current_scratchpad)
- if message.tool_calls:
- try:
- current_scratchpad.action = AgentScratchpadUnit.Action(
- action_name=message.tool_calls[0].function.name,
- action_input=json.loads(
- message.tool_calls[0].function.arguments)
- )
- current_scratchpad.action_str = json.dumps(
- current_scratchpad.action.to_dict()
- )
- except:
- pass
- elif isinstance(message, ToolPromptMessage):
- if current_scratchpad:
- current_scratchpad.observation = message.content
- elif isinstance(message, UserPromptMessage):
- if scratchpads:
- result.append(AssistantPromptMessage(
- content=self._format_assistant_message(scratchpads)
- ))
- scratchpads = []
- current_scratchpad = None
- result.append(message)
- if scratchpads:
- result.append(AssistantPromptMessage(
- content=self._format_assistant_message(scratchpads)
- ))
- historic_prompts = AgentHistoryPromptTransform(
- model_config=self.model_config,
- prompt_messages=current_session_messages or [],
- history_messages=result,
- memory=self.memory
- ).get_prompt()
- return historic_prompts
|