segment.py 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199
  1. from flask_login import current_user
  2. from flask_restful import marshal, reqparse
  3. from werkzeug.exceptions import NotFound
  4. from controllers.service_api import api
  5. from controllers.service_api.app.error import ProviderNotInitializeError
  6. from controllers.service_api.wraps import (
  7. DatasetApiResource,
  8. cloud_edition_billing_knowledge_limit_check,
  9. cloud_edition_billing_resource_check,
  10. )
  11. from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
  12. from core.model_manager import ModelManager
  13. from core.model_runtime.entities.model_entities import ModelType
  14. from extensions.ext_database import db
  15. from fields.segment_fields import segment_fields
  16. from models.dataset import Dataset, DocumentSegment
  17. from services.dataset_service import DatasetService, DocumentService, SegmentService
  18. class SegmentApi(DatasetApiResource):
  19. """Resource for segments."""
  20. @cloud_edition_billing_resource_check("vector_space", "dataset")
  21. @cloud_edition_billing_knowledge_limit_check("add_segment", "dataset")
  22. def post(self, tenant_id, dataset_id, document_id):
  23. """Create single segment."""
  24. # check dataset
  25. dataset_id = str(dataset_id)
  26. tenant_id = str(tenant_id)
  27. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  28. if not dataset:
  29. raise NotFound("Dataset not found.")
  30. # check document
  31. document_id = str(document_id)
  32. document = DocumentService.get_document(dataset.id, document_id)
  33. if not document:
  34. raise NotFound("Document not found.")
  35. # check embedding model setting
  36. if dataset.indexing_technique == "high_quality":
  37. try:
  38. model_manager = ModelManager()
  39. model_manager.get_model_instance(
  40. tenant_id=current_user.current_tenant_id,
  41. provider=dataset.embedding_model_provider,
  42. model_type=ModelType.TEXT_EMBEDDING,
  43. model=dataset.embedding_model,
  44. )
  45. except LLMBadRequestError:
  46. raise ProviderNotInitializeError(
  47. "No Embedding Model available. Please configure a valid provider "
  48. "in the Settings -> Model Provider."
  49. )
  50. except ProviderTokenNotInitError as ex:
  51. raise ProviderNotInitializeError(ex.description)
  52. # validate args
  53. parser = reqparse.RequestParser()
  54. parser.add_argument("segments", type=list, required=False, nullable=True, location="json")
  55. args = parser.parse_args()
  56. if args["segments"] is not None:
  57. for args_item in args["segments"]:
  58. SegmentService.segment_create_args_validate(args_item, document)
  59. segments = SegmentService.multi_create_segment(args["segments"], document, dataset)
  60. return {"data": marshal(segments, segment_fields), "doc_form": document.doc_form}, 200
  61. else:
  62. return {"error": "Segemtns is required"}, 400
  63. def get(self, tenant_id, dataset_id, document_id):
  64. """Create single segment."""
  65. # check dataset
  66. dataset_id = str(dataset_id)
  67. tenant_id = str(tenant_id)
  68. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  69. if not dataset:
  70. raise NotFound("Dataset not found.")
  71. # check document
  72. document_id = str(document_id)
  73. document = DocumentService.get_document(dataset.id, document_id)
  74. if not document:
  75. raise NotFound("Document not found.")
  76. # check embedding model setting
  77. if dataset.indexing_technique == "high_quality":
  78. try:
  79. model_manager = ModelManager()
  80. model_manager.get_model_instance(
  81. tenant_id=current_user.current_tenant_id,
  82. provider=dataset.embedding_model_provider,
  83. model_type=ModelType.TEXT_EMBEDDING,
  84. model=dataset.embedding_model,
  85. )
  86. except LLMBadRequestError:
  87. raise ProviderNotInitializeError(
  88. "No Embedding Model available. Please configure a valid provider "
  89. "in the Settings -> Model Provider."
  90. )
  91. except ProviderTokenNotInitError as ex:
  92. raise ProviderNotInitializeError(ex.description)
  93. parser = reqparse.RequestParser()
  94. parser.add_argument("status", type=str, action="append", default=[], location="args")
  95. parser.add_argument("keyword", type=str, default=None, location="args")
  96. args = parser.parse_args()
  97. status_list = args["status"]
  98. keyword = args["keyword"]
  99. query = DocumentSegment.query.filter(
  100. DocumentSegment.document_id == str(document_id), DocumentSegment.tenant_id == current_user.current_tenant_id
  101. )
  102. if status_list:
  103. query = query.filter(DocumentSegment.status.in_(status_list))
  104. if keyword:
  105. query = query.where(DocumentSegment.content.ilike(f"%{keyword}%"))
  106. total = query.count()
  107. segments = query.order_by(DocumentSegment.position).all()
  108. return {"data": marshal(segments, segment_fields), "doc_form": document.doc_form, "total": total}, 200
  109. class DatasetSegmentApi(DatasetApiResource):
  110. def delete(self, tenant_id, dataset_id, document_id, segment_id):
  111. # check dataset
  112. dataset_id = str(dataset_id)
  113. tenant_id = str(tenant_id)
  114. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  115. if not dataset:
  116. raise NotFound("Dataset not found.")
  117. # check user's model setting
  118. DatasetService.check_dataset_model_setting(dataset)
  119. # check document
  120. document_id = str(document_id)
  121. document = DocumentService.get_document(dataset_id, document_id)
  122. if not document:
  123. raise NotFound("Document not found.")
  124. # check segment
  125. segment = DocumentSegment.query.filter(
  126. DocumentSegment.id == str(segment_id), DocumentSegment.tenant_id == current_user.current_tenant_id
  127. ).first()
  128. if not segment:
  129. raise NotFound("Segment not found.")
  130. SegmentService.delete_segment(segment, document, dataset)
  131. return {"result": "success"}, 200
  132. @cloud_edition_billing_resource_check("vector_space", "dataset")
  133. def post(self, tenant_id, dataset_id, document_id, segment_id):
  134. # check dataset
  135. dataset_id = str(dataset_id)
  136. tenant_id = str(tenant_id)
  137. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  138. if not dataset:
  139. raise NotFound("Dataset not found.")
  140. # check user's model setting
  141. DatasetService.check_dataset_model_setting(dataset)
  142. # check document
  143. document_id = str(document_id)
  144. document = DocumentService.get_document(dataset_id, document_id)
  145. if not document:
  146. raise NotFound("Document not found.")
  147. if dataset.indexing_technique == "high_quality":
  148. # check embedding model setting
  149. try:
  150. model_manager = ModelManager()
  151. model_manager.get_model_instance(
  152. tenant_id=current_user.current_tenant_id,
  153. provider=dataset.embedding_model_provider,
  154. model_type=ModelType.TEXT_EMBEDDING,
  155. model=dataset.embedding_model,
  156. )
  157. except LLMBadRequestError:
  158. raise ProviderNotInitializeError(
  159. "No Embedding Model available. Please configure a valid provider "
  160. "in the Settings -> Model Provider."
  161. )
  162. except ProviderTokenNotInitError as ex:
  163. raise ProviderNotInitializeError(ex.description)
  164. # check segment
  165. segment_id = str(segment_id)
  166. segment = DocumentSegment.query.filter(
  167. DocumentSegment.id == str(segment_id), DocumentSegment.tenant_id == current_user.current_tenant_id
  168. ).first()
  169. if not segment:
  170. raise NotFound("Segment not found.")
  171. # validate args
  172. parser = reqparse.RequestParser()
  173. parser.add_argument("segment", type=dict, required=False, nullable=True, location="json")
  174. args = parser.parse_args()
  175. SegmentService.segment_create_args_validate(args["segment"], document)
  176. segment = SegmentService.update_segment(args["segment"], segment, document, dataset)
  177. return {"data": marshal(segment, segment_fields), "doc_form": document.doc_form}, 200
  178. api.add_resource(SegmentApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments")
  179. api.add_resource(
  180. DatasetSegmentApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments/<uuid:segment_id>"
  181. )