dataset_service.py 62 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360
  1. import datetime
  2. import json
  3. import logging
  4. import random
  5. import time
  6. import uuid
  7. from typing import Optional, cast
  8. from flask import current_app
  9. from flask_login import current_user
  10. from sqlalchemy import func
  11. from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
  12. from core.model_manager import ModelManager
  13. from core.model_runtime.entities.model_entities import ModelType
  14. from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
  15. from core.rag.datasource.keyword.keyword_factory import Keyword
  16. from core.rag.models.document import Document as RAGDocument
  17. from events.dataset_event import dataset_was_deleted
  18. from events.document_event import document_was_deleted
  19. from extensions.ext_database import db
  20. from extensions.ext_redis import redis_client
  21. from libs import helper
  22. from models.account import Account
  23. from models.dataset import (
  24. AppDatasetJoin,
  25. Dataset,
  26. DatasetCollectionBinding,
  27. DatasetProcessRule,
  28. DatasetQuery,
  29. Document,
  30. DocumentSegment,
  31. )
  32. from models.model import UploadFile
  33. from models.source import DataSourceBinding
  34. from services.errors.account import NoPermissionError
  35. from services.errors.dataset import DatasetNameDuplicateError
  36. from services.errors.document import DocumentIndexingError
  37. from services.errors.file import FileNotExistsError
  38. from services.feature_service import FeatureModel, FeatureService
  39. from services.tag_service import TagService
  40. from services.vector_service import VectorService
  41. from tasks.clean_notion_document_task import clean_notion_document_task
  42. from tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_task
  43. from tasks.delete_segment_from_index_task import delete_segment_from_index_task
  44. from tasks.document_indexing_task import document_indexing_task
  45. from tasks.document_indexing_update_task import document_indexing_update_task
  46. from tasks.duplicate_document_indexing_task import duplicate_document_indexing_task
  47. from tasks.recover_document_indexing_task import recover_document_indexing_task
  48. from tasks.retry_document_indexing_task import retry_document_indexing_task
  49. class DatasetService:
  50. @staticmethod
  51. def get_datasets(page, per_page, provider="vendor", tenant_id=None, user=None, search=None, tag_ids=None):
  52. if user:
  53. permission_filter = db.or_(Dataset.created_by == user.id,
  54. Dataset.permission == 'all_team_members')
  55. else:
  56. permission_filter = Dataset.permission == 'all_team_members'
  57. query = Dataset.query.filter(
  58. db.and_(Dataset.provider == provider, Dataset.tenant_id == tenant_id, permission_filter)) \
  59. .order_by(Dataset.created_at.desc())
  60. if search:
  61. query = query.filter(db.and_(Dataset.name.ilike(f'%{search}%')))
  62. if tag_ids:
  63. target_ids = TagService.get_target_ids_by_tag_ids('knowledge', tenant_id, tag_ids)
  64. if target_ids:
  65. query = query.filter(db.and_(Dataset.id.in_(target_ids)))
  66. else:
  67. return [], 0
  68. datasets = query.paginate(
  69. page=page,
  70. per_page=per_page,
  71. max_per_page=100,
  72. error_out=False
  73. )
  74. return datasets.items, datasets.total
  75. @staticmethod
  76. def get_process_rules(dataset_id):
  77. # get the latest process rule
  78. dataset_process_rule = db.session.query(DatasetProcessRule). \
  79. filter(DatasetProcessRule.dataset_id == dataset_id). \
  80. order_by(DatasetProcessRule.created_at.desc()). \
  81. limit(1). \
  82. one_or_none()
  83. if dataset_process_rule:
  84. mode = dataset_process_rule.mode
  85. rules = dataset_process_rule.rules_dict
  86. else:
  87. mode = DocumentService.DEFAULT_RULES['mode']
  88. rules = DocumentService.DEFAULT_RULES['rules']
  89. return {
  90. 'mode': mode,
  91. 'rules': rules
  92. }
  93. @staticmethod
  94. def get_datasets_by_ids(ids, tenant_id):
  95. datasets = Dataset.query.filter(Dataset.id.in_(ids),
  96. Dataset.tenant_id == tenant_id).paginate(
  97. page=1, per_page=len(ids), max_per_page=len(ids), error_out=False)
  98. return datasets.items, datasets.total
  99. @staticmethod
  100. def create_empty_dataset(tenant_id: str, name: str, indexing_technique: Optional[str], account: Account):
  101. # check if dataset name already exists
  102. if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():
  103. raise DatasetNameDuplicateError(
  104. f'Dataset with name {name} already exists.')
  105. embedding_model = None
  106. if indexing_technique == 'high_quality':
  107. model_manager = ModelManager()
  108. embedding_model = model_manager.get_default_model_instance(
  109. tenant_id=tenant_id,
  110. model_type=ModelType.TEXT_EMBEDDING
  111. )
  112. dataset = Dataset(name=name, indexing_technique=indexing_technique)
  113. # dataset = Dataset(name=name, provider=provider, config=config)
  114. dataset.created_by = account.id
  115. dataset.updated_by = account.id
  116. dataset.tenant_id = tenant_id
  117. dataset.embedding_model_provider = embedding_model.provider if embedding_model else None
  118. dataset.embedding_model = embedding_model.model if embedding_model else None
  119. db.session.add(dataset)
  120. db.session.commit()
  121. return dataset
  122. @staticmethod
  123. def get_dataset(dataset_id):
  124. return Dataset.query.filter_by(
  125. id=dataset_id
  126. ).first()
  127. @staticmethod
  128. def check_dataset_model_setting(dataset):
  129. if dataset.indexing_technique == 'high_quality':
  130. try:
  131. model_manager = ModelManager()
  132. model_manager.get_model_instance(
  133. tenant_id=dataset.tenant_id,
  134. provider=dataset.embedding_model_provider,
  135. model_type=ModelType.TEXT_EMBEDDING,
  136. model=dataset.embedding_model
  137. )
  138. except LLMBadRequestError:
  139. raise ValueError(
  140. "No Embedding Model available. Please configure a valid provider "
  141. "in the Settings -> Model Provider.")
  142. except ProviderTokenNotInitError as ex:
  143. raise ValueError(f"The dataset in unavailable, due to: "
  144. f"{ex.description}")
  145. @staticmethod
  146. def update_dataset(dataset_id, data, user):
  147. filtered_data = {k: v for k, v in data.items() if v is not None or k == 'description'}
  148. dataset = DatasetService.get_dataset(dataset_id)
  149. DatasetService.check_dataset_permission(dataset, user)
  150. action = None
  151. if dataset.indexing_technique != data['indexing_technique']:
  152. # if update indexing_technique
  153. if data['indexing_technique'] == 'economy':
  154. action = 'remove'
  155. filtered_data['embedding_model'] = None
  156. filtered_data['embedding_model_provider'] = None
  157. filtered_data['collection_binding_id'] = None
  158. elif data['indexing_technique'] == 'high_quality':
  159. action = 'add'
  160. # get embedding model setting
  161. try:
  162. model_manager = ModelManager()
  163. embedding_model = model_manager.get_model_instance(
  164. tenant_id=current_user.current_tenant_id,
  165. provider=data['embedding_model_provider'],
  166. model_type=ModelType.TEXT_EMBEDDING,
  167. model=data['embedding_model']
  168. )
  169. filtered_data['embedding_model'] = embedding_model.model
  170. filtered_data['embedding_model_provider'] = embedding_model.provider
  171. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  172. embedding_model.provider,
  173. embedding_model.model
  174. )
  175. filtered_data['collection_binding_id'] = dataset_collection_binding.id
  176. except LLMBadRequestError:
  177. raise ValueError(
  178. "No Embedding Model available. Please configure a valid provider "
  179. "in the Settings -> Model Provider.")
  180. except ProviderTokenNotInitError as ex:
  181. raise ValueError(ex.description)
  182. else:
  183. if data['embedding_model_provider'] != dataset.embedding_model_provider or \
  184. data['embedding_model'] != dataset.embedding_model:
  185. action = 'update'
  186. try:
  187. model_manager = ModelManager()
  188. embedding_model = model_manager.get_model_instance(
  189. tenant_id=current_user.current_tenant_id,
  190. provider=data['embedding_model_provider'],
  191. model_type=ModelType.TEXT_EMBEDDING,
  192. model=data['embedding_model']
  193. )
  194. filtered_data['embedding_model'] = embedding_model.model
  195. filtered_data['embedding_model_provider'] = embedding_model.provider
  196. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  197. embedding_model.provider,
  198. embedding_model.model
  199. )
  200. filtered_data['collection_binding_id'] = dataset_collection_binding.id
  201. except LLMBadRequestError:
  202. raise ValueError(
  203. "No Embedding Model available. Please configure a valid provider "
  204. "in the Settings -> Model Provider.")
  205. except ProviderTokenNotInitError as ex:
  206. raise ValueError(ex.description)
  207. filtered_data['updated_by'] = user.id
  208. filtered_data['updated_at'] = datetime.datetime.now()
  209. # update Retrieval model
  210. filtered_data['retrieval_model'] = data['retrieval_model']
  211. dataset.query.filter_by(id=dataset_id).update(filtered_data)
  212. db.session.commit()
  213. if action:
  214. deal_dataset_vector_index_task.delay(dataset_id, action)
  215. return dataset
  216. @staticmethod
  217. def delete_dataset(dataset_id, user):
  218. # todo: cannot delete dataset if it is being processed
  219. dataset = DatasetService.get_dataset(dataset_id)
  220. if dataset is None:
  221. return False
  222. DatasetService.check_dataset_permission(dataset, user)
  223. dataset_was_deleted.send(dataset)
  224. db.session.delete(dataset)
  225. db.session.commit()
  226. return True
  227. @staticmethod
  228. def check_dataset_permission(dataset, user):
  229. if dataset.tenant_id != user.current_tenant_id:
  230. logging.debug(
  231. f'User {user.id} does not have permission to access dataset {dataset.id}')
  232. raise NoPermissionError(
  233. 'You do not have permission to access this dataset.')
  234. if dataset.permission == 'only_me' and dataset.created_by != user.id:
  235. logging.debug(
  236. f'User {user.id} does not have permission to access dataset {dataset.id}')
  237. raise NoPermissionError(
  238. 'You do not have permission to access this dataset.')
  239. @staticmethod
  240. def get_dataset_queries(dataset_id: str, page: int, per_page: int):
  241. dataset_queries = DatasetQuery.query.filter_by(dataset_id=dataset_id) \
  242. .order_by(db.desc(DatasetQuery.created_at)) \
  243. .paginate(
  244. page=page, per_page=per_page, max_per_page=100, error_out=False
  245. )
  246. return dataset_queries.items, dataset_queries.total
  247. @staticmethod
  248. def get_related_apps(dataset_id: str):
  249. return AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id) \
  250. .order_by(db.desc(AppDatasetJoin.created_at)).all()
  251. class DocumentService:
  252. DEFAULT_RULES = {
  253. 'mode': 'custom',
  254. 'rules': {
  255. 'pre_processing_rules': [
  256. {'id': 'remove_extra_spaces', 'enabled': True},
  257. {'id': 'remove_urls_emails', 'enabled': False}
  258. ],
  259. 'segmentation': {
  260. 'delimiter': '\n',
  261. 'max_tokens': 500,
  262. 'chunk_overlap': 50
  263. }
  264. }
  265. }
  266. DOCUMENT_METADATA_SCHEMA = {
  267. "book": {
  268. "title": str,
  269. "language": str,
  270. "author": str,
  271. "publisher": str,
  272. "publication_date": str,
  273. "isbn": str,
  274. "category": str,
  275. },
  276. "web_page": {
  277. "title": str,
  278. "url": str,
  279. "language": str,
  280. "publish_date": str,
  281. "author/publisher": str,
  282. "topic/keywords": str,
  283. "description": str,
  284. },
  285. "paper": {
  286. "title": str,
  287. "language": str,
  288. "author": str,
  289. "publish_date": str,
  290. "journal/conference_name": str,
  291. "volume/issue/page_numbers": str,
  292. "doi": str,
  293. "topic/keywords": str,
  294. "abstract": str,
  295. },
  296. "social_media_post": {
  297. "platform": str,
  298. "author/username": str,
  299. "publish_date": str,
  300. "post_url": str,
  301. "topic/tags": str,
  302. },
  303. "wikipedia_entry": {
  304. "title": str,
  305. "language": str,
  306. "web_page_url": str,
  307. "last_edit_date": str,
  308. "editor/contributor": str,
  309. "summary/introduction": str,
  310. },
  311. "personal_document": {
  312. "title": str,
  313. "author": str,
  314. "creation_date": str,
  315. "last_modified_date": str,
  316. "document_type": str,
  317. "tags/category": str,
  318. },
  319. "business_document": {
  320. "title": str,
  321. "author": str,
  322. "creation_date": str,
  323. "last_modified_date": str,
  324. "document_type": str,
  325. "department/team": str,
  326. },
  327. "im_chat_log": {
  328. "chat_platform": str,
  329. "chat_participants/group_name": str,
  330. "start_date": str,
  331. "end_date": str,
  332. "summary": str,
  333. },
  334. "synced_from_notion": {
  335. "title": str,
  336. "language": str,
  337. "author/creator": str,
  338. "creation_date": str,
  339. "last_modified_date": str,
  340. "notion_page_link": str,
  341. "category/tags": str,
  342. "description": str,
  343. },
  344. "synced_from_github": {
  345. "repository_name": str,
  346. "repository_description": str,
  347. "repository_owner/organization": str,
  348. "code_filename": str,
  349. "code_file_path": str,
  350. "programming_language": str,
  351. "github_link": str,
  352. "open_source_license": str,
  353. "commit_date": str,
  354. "commit_author": str,
  355. },
  356. "others": dict
  357. }
  358. @staticmethod
  359. def get_document(dataset_id: str, document_id: str) -> Optional[Document]:
  360. document = db.session.query(Document).filter(
  361. Document.id == document_id,
  362. Document.dataset_id == dataset_id
  363. ).first()
  364. return document
  365. @staticmethod
  366. def get_document_by_id(document_id: str) -> Optional[Document]:
  367. document = db.session.query(Document).filter(
  368. Document.id == document_id
  369. ).first()
  370. return document
  371. @staticmethod
  372. def get_document_by_dataset_id(dataset_id: str) -> list[Document]:
  373. documents = db.session.query(Document).filter(
  374. Document.dataset_id == dataset_id,
  375. Document.enabled == True
  376. ).all()
  377. return documents
  378. @staticmethod
  379. def get_error_documents_by_dataset_id(dataset_id: str) -> list[Document]:
  380. documents = db.session.query(Document).filter(
  381. Document.dataset_id == dataset_id,
  382. Document.indexing_status.in_(['error', 'paused'])
  383. ).all()
  384. return documents
  385. @staticmethod
  386. def get_batch_documents(dataset_id: str, batch: str) -> list[Document]:
  387. documents = db.session.query(Document).filter(
  388. Document.batch == batch,
  389. Document.dataset_id == dataset_id,
  390. Document.tenant_id == current_user.current_tenant_id
  391. ).all()
  392. return documents
  393. @staticmethod
  394. def get_document_file_detail(file_id: str):
  395. file_detail = db.session.query(UploadFile). \
  396. filter(UploadFile.id == file_id). \
  397. one_or_none()
  398. return file_detail
  399. @staticmethod
  400. def check_archived(document):
  401. if document.archived:
  402. return True
  403. else:
  404. return False
  405. @staticmethod
  406. def delete_document(document):
  407. # trigger document_was_deleted signal
  408. document_was_deleted.send(document.id, dataset_id=document.dataset_id, doc_form=document.doc_form)
  409. db.session.delete(document)
  410. db.session.commit()
  411. @staticmethod
  412. def pause_document(document):
  413. if document.indexing_status not in ["waiting", "parsing", "cleaning", "splitting", "indexing"]:
  414. raise DocumentIndexingError()
  415. # update document to be paused
  416. document.is_paused = True
  417. document.paused_by = current_user.id
  418. document.paused_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  419. db.session.add(document)
  420. db.session.commit()
  421. # set document paused flag
  422. indexing_cache_key = 'document_{}_is_paused'.format(document.id)
  423. redis_client.setnx(indexing_cache_key, "True")
  424. @staticmethod
  425. def recover_document(document):
  426. if not document.is_paused:
  427. raise DocumentIndexingError()
  428. # update document to be recover
  429. document.is_paused = False
  430. document.paused_by = None
  431. document.paused_at = None
  432. db.session.add(document)
  433. db.session.commit()
  434. # delete paused flag
  435. indexing_cache_key = 'document_{}_is_paused'.format(document.id)
  436. redis_client.delete(indexing_cache_key)
  437. # trigger async task
  438. recover_document_indexing_task.delay(document.dataset_id, document.id)
  439. @staticmethod
  440. def retry_document(dataset_id: str, documents: list[Document]):
  441. for document in documents:
  442. # retry document indexing
  443. document.indexing_status = 'waiting'
  444. db.session.add(document)
  445. db.session.commit()
  446. # add retry flag
  447. retry_indexing_cache_key = 'document_{}_is_retried'.format(document.id)
  448. redis_client.setex(retry_indexing_cache_key, 600, 1)
  449. # trigger async task
  450. document_ids = [document.id for document in documents]
  451. retry_document_indexing_task.delay(dataset_id, document_ids)
  452. @staticmethod
  453. def get_documents_position(dataset_id):
  454. document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first()
  455. if document:
  456. return document.position + 1
  457. else:
  458. return 1
  459. @staticmethod
  460. def save_document_with_dataset_id(dataset: Dataset, document_data: dict,
  461. account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
  462. created_from: str = 'web'):
  463. # check document limit
  464. features = FeatureService.get_features(current_user.current_tenant_id)
  465. if features.billing.enabled:
  466. if 'original_document_id' not in document_data or not document_data['original_document_id']:
  467. count = 0
  468. if document_data["data_source"]["type"] == "upload_file":
  469. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  470. count = len(upload_file_list)
  471. elif document_data["data_source"]["type"] == "notion_import":
  472. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  473. for notion_info in notion_info_list:
  474. count = count + len(notion_info['pages'])
  475. batch_upload_limit = int(current_app.config['BATCH_UPLOAD_LIMIT'])
  476. if count > batch_upload_limit:
  477. raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
  478. DocumentService.check_documents_upload_quota(count, features)
  479. # if dataset is empty, update dataset data_source_type
  480. if not dataset.data_source_type:
  481. dataset.data_source_type = document_data["data_source"]["type"]
  482. if not dataset.indexing_technique:
  483. if 'indexing_technique' not in document_data \
  484. or document_data['indexing_technique'] not in Dataset.INDEXING_TECHNIQUE_LIST:
  485. raise ValueError("Indexing technique is required")
  486. dataset.indexing_technique = document_data["indexing_technique"]
  487. if document_data["indexing_technique"] == 'high_quality':
  488. model_manager = ModelManager()
  489. embedding_model = model_manager.get_default_model_instance(
  490. tenant_id=current_user.current_tenant_id,
  491. model_type=ModelType.TEXT_EMBEDDING
  492. )
  493. dataset.embedding_model = embedding_model.model
  494. dataset.embedding_model_provider = embedding_model.provider
  495. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  496. embedding_model.provider,
  497. embedding_model.model
  498. )
  499. dataset.collection_binding_id = dataset_collection_binding.id
  500. if not dataset.retrieval_model:
  501. default_retrieval_model = {
  502. 'search_method': 'semantic_search',
  503. 'reranking_enable': False,
  504. 'reranking_model': {
  505. 'reranking_provider_name': '',
  506. 'reranking_model_name': ''
  507. },
  508. 'top_k': 2,
  509. 'score_threshold_enabled': False
  510. }
  511. dataset.retrieval_model = document_data.get('retrieval_model') if document_data.get(
  512. 'retrieval_model') else default_retrieval_model
  513. documents = []
  514. batch = time.strftime('%Y%m%d%H%M%S') + str(random.randint(100000, 999999))
  515. if 'original_document_id' in document_data and document_data["original_document_id"]:
  516. document = DocumentService.update_document_with_dataset_id(dataset, document_data, account)
  517. documents.append(document)
  518. else:
  519. # save process rule
  520. if not dataset_process_rule:
  521. process_rule = document_data["process_rule"]
  522. if process_rule["mode"] == "custom":
  523. dataset_process_rule = DatasetProcessRule(
  524. dataset_id=dataset.id,
  525. mode=process_rule["mode"],
  526. rules=json.dumps(process_rule["rules"]),
  527. created_by=account.id
  528. )
  529. elif process_rule["mode"] == "automatic":
  530. dataset_process_rule = DatasetProcessRule(
  531. dataset_id=dataset.id,
  532. mode=process_rule["mode"],
  533. rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
  534. created_by=account.id
  535. )
  536. db.session.add(dataset_process_rule)
  537. db.session.commit()
  538. position = DocumentService.get_documents_position(dataset.id)
  539. document_ids = []
  540. duplicate_document_ids = []
  541. if document_data["data_source"]["type"] == "upload_file":
  542. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  543. for file_id in upload_file_list:
  544. file = db.session.query(UploadFile).filter(
  545. UploadFile.tenant_id == dataset.tenant_id,
  546. UploadFile.id == file_id
  547. ).first()
  548. # raise error if file not found
  549. if not file:
  550. raise FileNotExistsError()
  551. file_name = file.name
  552. data_source_info = {
  553. "upload_file_id": file_id,
  554. }
  555. # check duplicate
  556. if document_data.get('duplicate', False):
  557. document = Document.query.filter_by(
  558. dataset_id=dataset.id,
  559. tenant_id=current_user.current_tenant_id,
  560. data_source_type='upload_file',
  561. enabled=True,
  562. name=file_name
  563. ).first()
  564. if document:
  565. document.dataset_process_rule_id = dataset_process_rule.id
  566. document.updated_at = datetime.datetime.utcnow()
  567. document.created_from = created_from
  568. document.doc_form = document_data['doc_form']
  569. document.doc_language = document_data['doc_language']
  570. document.data_source_info = json.dumps(data_source_info)
  571. document.batch = batch
  572. document.indexing_status = 'waiting'
  573. db.session.add(document)
  574. documents.append(document)
  575. duplicate_document_ids.append(document.id)
  576. continue
  577. document = DocumentService.build_document(dataset, dataset_process_rule.id,
  578. document_data["data_source"]["type"],
  579. document_data["doc_form"],
  580. document_data["doc_language"],
  581. data_source_info, created_from, position,
  582. account, file_name, batch)
  583. db.session.add(document)
  584. db.session.flush()
  585. document_ids.append(document.id)
  586. documents.append(document)
  587. position += 1
  588. elif document_data["data_source"]["type"] == "notion_import":
  589. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  590. exist_page_ids = []
  591. exist_document = dict()
  592. documents = Document.query.filter_by(
  593. dataset_id=dataset.id,
  594. tenant_id=current_user.current_tenant_id,
  595. data_source_type='notion_import',
  596. enabled=True
  597. ).all()
  598. if documents:
  599. for document in documents:
  600. data_source_info = json.loads(document.data_source_info)
  601. exist_page_ids.append(data_source_info['notion_page_id'])
  602. exist_document[data_source_info['notion_page_id']] = document.id
  603. for notion_info in notion_info_list:
  604. workspace_id = notion_info['workspace_id']
  605. data_source_binding = DataSourceBinding.query.filter(
  606. db.and_(
  607. DataSourceBinding.tenant_id == current_user.current_tenant_id,
  608. DataSourceBinding.provider == 'notion',
  609. DataSourceBinding.disabled == False,
  610. DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
  611. )
  612. ).first()
  613. if not data_source_binding:
  614. raise ValueError('Data source binding not found.')
  615. for page in notion_info['pages']:
  616. if page['page_id'] not in exist_page_ids:
  617. data_source_info = {
  618. "notion_workspace_id": workspace_id,
  619. "notion_page_id": page['page_id'],
  620. "notion_page_icon": page['page_icon'],
  621. "type": page['type']
  622. }
  623. document = DocumentService.build_document(dataset, dataset_process_rule.id,
  624. document_data["data_source"]["type"],
  625. document_data["doc_form"],
  626. document_data["doc_language"],
  627. data_source_info, created_from, position,
  628. account, page['page_name'], batch)
  629. db.session.add(document)
  630. db.session.flush()
  631. document_ids.append(document.id)
  632. documents.append(document)
  633. position += 1
  634. else:
  635. exist_document.pop(page['page_id'])
  636. # delete not selected documents
  637. if len(exist_document) > 0:
  638. clean_notion_document_task.delay(list(exist_document.values()), dataset.id)
  639. db.session.commit()
  640. # trigger async task
  641. if document_ids:
  642. document_indexing_task.delay(dataset.id, document_ids)
  643. if duplicate_document_ids:
  644. duplicate_document_indexing_task.delay(dataset.id, duplicate_document_ids)
  645. return documents, batch
  646. @staticmethod
  647. def check_documents_upload_quota(count: int, features: FeatureModel):
  648. can_upload_size = features.documents_upload_quota.limit - features.documents_upload_quota.size
  649. if count > can_upload_size:
  650. raise ValueError(
  651. f'You have reached the limit of your subscription. Only {can_upload_size} documents can be uploaded.')
  652. @staticmethod
  653. def build_document(dataset: Dataset, process_rule_id: str, data_source_type: str, document_form: str,
  654. document_language: str, data_source_info: dict, created_from: str, position: int,
  655. account: Account,
  656. name: str, batch: str):
  657. document = Document(
  658. tenant_id=dataset.tenant_id,
  659. dataset_id=dataset.id,
  660. position=position,
  661. data_source_type=data_source_type,
  662. data_source_info=json.dumps(data_source_info),
  663. dataset_process_rule_id=process_rule_id,
  664. batch=batch,
  665. name=name,
  666. created_from=created_from,
  667. created_by=account.id,
  668. doc_form=document_form,
  669. doc_language=document_language
  670. )
  671. return document
  672. @staticmethod
  673. def get_tenant_documents_count():
  674. documents_count = Document.query.filter(Document.completed_at.isnot(None),
  675. Document.enabled == True,
  676. Document.archived == False,
  677. Document.tenant_id == current_user.current_tenant_id).count()
  678. return documents_count
  679. @staticmethod
  680. def update_document_with_dataset_id(dataset: Dataset, document_data: dict,
  681. account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
  682. created_from: str = 'web'):
  683. DatasetService.check_dataset_model_setting(dataset)
  684. document = DocumentService.get_document(dataset.id, document_data["original_document_id"])
  685. if document.display_status != 'available':
  686. raise ValueError("Document is not available")
  687. # update document name
  688. if 'name' in document_data and document_data['name']:
  689. document.name = document_data['name']
  690. # save process rule
  691. if 'process_rule' in document_data and document_data['process_rule']:
  692. process_rule = document_data["process_rule"]
  693. if process_rule["mode"] == "custom":
  694. dataset_process_rule = DatasetProcessRule(
  695. dataset_id=dataset.id,
  696. mode=process_rule["mode"],
  697. rules=json.dumps(process_rule["rules"]),
  698. created_by=account.id
  699. )
  700. elif process_rule["mode"] == "automatic":
  701. dataset_process_rule = DatasetProcessRule(
  702. dataset_id=dataset.id,
  703. mode=process_rule["mode"],
  704. rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
  705. created_by=account.id
  706. )
  707. db.session.add(dataset_process_rule)
  708. db.session.commit()
  709. document.dataset_process_rule_id = dataset_process_rule.id
  710. # update document data source
  711. if 'data_source' in document_data and document_data['data_source']:
  712. file_name = ''
  713. data_source_info = {}
  714. if document_data["data_source"]["type"] == "upload_file":
  715. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  716. for file_id in upload_file_list:
  717. file = db.session.query(UploadFile).filter(
  718. UploadFile.tenant_id == dataset.tenant_id,
  719. UploadFile.id == file_id
  720. ).first()
  721. # raise error if file not found
  722. if not file:
  723. raise FileNotExistsError()
  724. file_name = file.name
  725. data_source_info = {
  726. "upload_file_id": file_id,
  727. }
  728. elif document_data["data_source"]["type"] == "notion_import":
  729. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  730. for notion_info in notion_info_list:
  731. workspace_id = notion_info['workspace_id']
  732. data_source_binding = DataSourceBinding.query.filter(
  733. db.and_(
  734. DataSourceBinding.tenant_id == current_user.current_tenant_id,
  735. DataSourceBinding.provider == 'notion',
  736. DataSourceBinding.disabled == False,
  737. DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
  738. )
  739. ).first()
  740. if not data_source_binding:
  741. raise ValueError('Data source binding not found.')
  742. for page in notion_info['pages']:
  743. data_source_info = {
  744. "notion_workspace_id": workspace_id,
  745. "notion_page_id": page['page_id'],
  746. "notion_page_icon": page['page_icon'],
  747. "type": page['type']
  748. }
  749. document.data_source_type = document_data["data_source"]["type"]
  750. document.data_source_info = json.dumps(data_source_info)
  751. document.name = file_name
  752. # update document to be waiting
  753. document.indexing_status = 'waiting'
  754. document.completed_at = None
  755. document.processing_started_at = None
  756. document.parsing_completed_at = None
  757. document.cleaning_completed_at = None
  758. document.splitting_completed_at = None
  759. document.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  760. document.created_from = created_from
  761. document.doc_form = document_data['doc_form']
  762. db.session.add(document)
  763. db.session.commit()
  764. # update document segment
  765. update_params = {
  766. DocumentSegment.status: 're_segment'
  767. }
  768. DocumentSegment.query.filter_by(document_id=document.id).update(update_params)
  769. db.session.commit()
  770. # trigger async task
  771. document_indexing_update_task.delay(document.dataset_id, document.id)
  772. return document
  773. @staticmethod
  774. def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account):
  775. features = FeatureService.get_features(current_user.current_tenant_id)
  776. if features.billing.enabled:
  777. count = 0
  778. if document_data["data_source"]["type"] == "upload_file":
  779. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  780. count = len(upload_file_list)
  781. elif document_data["data_source"]["type"] == "notion_import":
  782. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  783. for notion_info in notion_info_list:
  784. count = count + len(notion_info['pages'])
  785. batch_upload_limit = int(current_app.config['BATCH_UPLOAD_LIMIT'])
  786. if count > batch_upload_limit:
  787. raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
  788. DocumentService.check_documents_upload_quota(count, features)
  789. embedding_model = None
  790. dataset_collection_binding_id = None
  791. retrieval_model = None
  792. if document_data['indexing_technique'] == 'high_quality':
  793. model_manager = ModelManager()
  794. embedding_model = model_manager.get_default_model_instance(
  795. tenant_id=current_user.current_tenant_id,
  796. model_type=ModelType.TEXT_EMBEDDING
  797. )
  798. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  799. embedding_model.provider,
  800. embedding_model.model
  801. )
  802. dataset_collection_binding_id = dataset_collection_binding.id
  803. if 'retrieval_model' in document_data and document_data['retrieval_model']:
  804. retrieval_model = document_data['retrieval_model']
  805. else:
  806. default_retrieval_model = {
  807. 'search_method': 'semantic_search',
  808. 'reranking_enable': False,
  809. 'reranking_model': {
  810. 'reranking_provider_name': '',
  811. 'reranking_model_name': ''
  812. },
  813. 'top_k': 2,
  814. 'score_threshold_enabled': False
  815. }
  816. retrieval_model = default_retrieval_model
  817. # save dataset
  818. dataset = Dataset(
  819. tenant_id=tenant_id,
  820. name='',
  821. data_source_type=document_data["data_source"]["type"],
  822. indexing_technique=document_data["indexing_technique"],
  823. created_by=account.id,
  824. embedding_model=embedding_model.model if embedding_model else None,
  825. embedding_model_provider=embedding_model.provider if embedding_model else None,
  826. collection_binding_id=dataset_collection_binding_id,
  827. retrieval_model=retrieval_model
  828. )
  829. db.session.add(dataset)
  830. db.session.flush()
  831. documents, batch = DocumentService.save_document_with_dataset_id(dataset, document_data, account)
  832. cut_length = 18
  833. cut_name = documents[0].name[:cut_length]
  834. dataset.name = cut_name + '...'
  835. dataset.description = 'useful for when you want to answer queries about the ' + documents[0].name
  836. db.session.commit()
  837. return dataset, documents, batch
  838. @classmethod
  839. def document_create_args_validate(cls, args: dict):
  840. if 'original_document_id' not in args or not args['original_document_id']:
  841. DocumentService.data_source_args_validate(args)
  842. DocumentService.process_rule_args_validate(args)
  843. else:
  844. if ('data_source' not in args and not args['data_source']) \
  845. and ('process_rule' not in args and not args['process_rule']):
  846. raise ValueError("Data source or Process rule is required")
  847. else:
  848. if 'data_source' in args and args['data_source']:
  849. DocumentService.data_source_args_validate(args)
  850. if 'process_rule' in args and args['process_rule']:
  851. DocumentService.process_rule_args_validate(args)
  852. @classmethod
  853. def data_source_args_validate(cls, args: dict):
  854. if 'data_source' not in args or not args['data_source']:
  855. raise ValueError("Data source is required")
  856. if not isinstance(args['data_source'], dict):
  857. raise ValueError("Data source is invalid")
  858. if 'type' not in args['data_source'] or not args['data_source']['type']:
  859. raise ValueError("Data source type is required")
  860. if args['data_source']['type'] not in Document.DATA_SOURCES:
  861. raise ValueError("Data source type is invalid")
  862. if 'info_list' not in args['data_source'] or not args['data_source']['info_list']:
  863. raise ValueError("Data source info is required")
  864. if args['data_source']['type'] == 'upload_file':
  865. if 'file_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
  866. 'file_info_list']:
  867. raise ValueError("File source info is required")
  868. if args['data_source']['type'] == 'notion_import':
  869. if 'notion_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
  870. 'notion_info_list']:
  871. raise ValueError("Notion source info is required")
  872. @classmethod
  873. def process_rule_args_validate(cls, args: dict):
  874. if 'process_rule' not in args or not args['process_rule']:
  875. raise ValueError("Process rule is required")
  876. if not isinstance(args['process_rule'], dict):
  877. raise ValueError("Process rule is invalid")
  878. if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
  879. raise ValueError("Process rule mode is required")
  880. if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
  881. raise ValueError("Process rule mode is invalid")
  882. if args['process_rule']['mode'] == 'automatic':
  883. args['process_rule']['rules'] = {}
  884. else:
  885. if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
  886. raise ValueError("Process rule rules is required")
  887. if not isinstance(args['process_rule']['rules'], dict):
  888. raise ValueError("Process rule rules is invalid")
  889. if 'pre_processing_rules' not in args['process_rule']['rules'] \
  890. or args['process_rule']['rules']['pre_processing_rules'] is None:
  891. raise ValueError("Process rule pre_processing_rules is required")
  892. if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
  893. raise ValueError("Process rule pre_processing_rules is invalid")
  894. unique_pre_processing_rule_dicts = {}
  895. for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
  896. if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
  897. raise ValueError("Process rule pre_processing_rules id is required")
  898. if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
  899. raise ValueError("Process rule pre_processing_rules id is invalid")
  900. if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
  901. raise ValueError("Process rule pre_processing_rules enabled is required")
  902. if not isinstance(pre_processing_rule['enabled'], bool):
  903. raise ValueError("Process rule pre_processing_rules enabled is invalid")
  904. unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
  905. args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
  906. if 'segmentation' not in args['process_rule']['rules'] \
  907. or args['process_rule']['rules']['segmentation'] is None:
  908. raise ValueError("Process rule segmentation is required")
  909. if not isinstance(args['process_rule']['rules']['segmentation'], dict):
  910. raise ValueError("Process rule segmentation is invalid")
  911. if 'separator' not in args['process_rule']['rules']['segmentation'] \
  912. or not args['process_rule']['rules']['segmentation']['separator']:
  913. raise ValueError("Process rule segmentation separator is required")
  914. if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
  915. raise ValueError("Process rule segmentation separator is invalid")
  916. if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
  917. or not args['process_rule']['rules']['segmentation']['max_tokens']:
  918. raise ValueError("Process rule segmentation max_tokens is required")
  919. if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
  920. raise ValueError("Process rule segmentation max_tokens is invalid")
  921. @classmethod
  922. def estimate_args_validate(cls, args: dict):
  923. if 'info_list' not in args or not args['info_list']:
  924. raise ValueError("Data source info is required")
  925. if not isinstance(args['info_list'], dict):
  926. raise ValueError("Data info is invalid")
  927. if 'process_rule' not in args or not args['process_rule']:
  928. raise ValueError("Process rule is required")
  929. if not isinstance(args['process_rule'], dict):
  930. raise ValueError("Process rule is invalid")
  931. if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
  932. raise ValueError("Process rule mode is required")
  933. if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
  934. raise ValueError("Process rule mode is invalid")
  935. if args['process_rule']['mode'] == 'automatic':
  936. args['process_rule']['rules'] = {}
  937. else:
  938. if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
  939. raise ValueError("Process rule rules is required")
  940. if not isinstance(args['process_rule']['rules'], dict):
  941. raise ValueError("Process rule rules is invalid")
  942. if 'pre_processing_rules' not in args['process_rule']['rules'] \
  943. or args['process_rule']['rules']['pre_processing_rules'] is None:
  944. raise ValueError("Process rule pre_processing_rules is required")
  945. if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
  946. raise ValueError("Process rule pre_processing_rules is invalid")
  947. unique_pre_processing_rule_dicts = {}
  948. for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
  949. if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
  950. raise ValueError("Process rule pre_processing_rules id is required")
  951. if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
  952. raise ValueError("Process rule pre_processing_rules id is invalid")
  953. if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
  954. raise ValueError("Process rule pre_processing_rules enabled is required")
  955. if not isinstance(pre_processing_rule['enabled'], bool):
  956. raise ValueError("Process rule pre_processing_rules enabled is invalid")
  957. unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
  958. args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
  959. if 'segmentation' not in args['process_rule']['rules'] \
  960. or args['process_rule']['rules']['segmentation'] is None:
  961. raise ValueError("Process rule segmentation is required")
  962. if not isinstance(args['process_rule']['rules']['segmentation'], dict):
  963. raise ValueError("Process rule segmentation is invalid")
  964. if 'separator' not in args['process_rule']['rules']['segmentation'] \
  965. or not args['process_rule']['rules']['segmentation']['separator']:
  966. raise ValueError("Process rule segmentation separator is required")
  967. if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
  968. raise ValueError("Process rule segmentation separator is invalid")
  969. if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
  970. or not args['process_rule']['rules']['segmentation']['max_tokens']:
  971. raise ValueError("Process rule segmentation max_tokens is required")
  972. if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
  973. raise ValueError("Process rule segmentation max_tokens is invalid")
  974. class SegmentService:
  975. @classmethod
  976. def segment_create_args_validate(cls, args: dict, document: Document):
  977. if document.doc_form == 'qa_model':
  978. if 'answer' not in args or not args['answer']:
  979. raise ValueError("Answer is required")
  980. if not args['answer'].strip():
  981. raise ValueError("Answer is empty")
  982. if 'content' not in args or not args['content'] or not args['content'].strip():
  983. raise ValueError("Content is empty")
  984. @classmethod
  985. def create_segment(cls, args: dict, document: Document, dataset: Dataset):
  986. content = args['content']
  987. doc_id = str(uuid.uuid4())
  988. segment_hash = helper.generate_text_hash(content)
  989. tokens = 0
  990. if dataset.indexing_technique == 'high_quality':
  991. model_manager = ModelManager()
  992. embedding_model = model_manager.get_model_instance(
  993. tenant_id=current_user.current_tenant_id,
  994. provider=dataset.embedding_model_provider,
  995. model_type=ModelType.TEXT_EMBEDDING,
  996. model=dataset.embedding_model
  997. )
  998. # calc embedding use tokens
  999. model_type_instance = cast(TextEmbeddingModel, embedding_model.model_type_instance)
  1000. tokens = model_type_instance.get_num_tokens(
  1001. model=embedding_model.model,
  1002. credentials=embedding_model.credentials,
  1003. texts=[content]
  1004. )
  1005. lock_name = 'add_segment_lock_document_id_{}'.format(document.id)
  1006. with redis_client.lock(lock_name, timeout=600):
  1007. max_position = db.session.query(func.max(DocumentSegment.position)).filter(
  1008. DocumentSegment.document_id == document.id
  1009. ).scalar()
  1010. segment_document = DocumentSegment(
  1011. tenant_id=current_user.current_tenant_id,
  1012. dataset_id=document.dataset_id,
  1013. document_id=document.id,
  1014. index_node_id=doc_id,
  1015. index_node_hash=segment_hash,
  1016. position=max_position + 1 if max_position else 1,
  1017. content=content,
  1018. word_count=len(content),
  1019. tokens=tokens,
  1020. status='completed',
  1021. indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  1022. completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  1023. created_by=current_user.id
  1024. )
  1025. if document.doc_form == 'qa_model':
  1026. segment_document.answer = args['answer']
  1027. db.session.add(segment_document)
  1028. db.session.commit()
  1029. # save vector index
  1030. try:
  1031. VectorService.create_segments_vector([args['keywords']], [segment_document], dataset)
  1032. except Exception as e:
  1033. logging.exception("create segment index failed")
  1034. segment_document.enabled = False
  1035. segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1036. segment_document.status = 'error'
  1037. segment_document.error = str(e)
  1038. db.session.commit()
  1039. segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_document.id).first()
  1040. return segment
  1041. @classmethod
  1042. def multi_create_segment(cls, segments: list, document: Document, dataset: Dataset):
  1043. lock_name = 'multi_add_segment_lock_document_id_{}'.format(document.id)
  1044. with redis_client.lock(lock_name, timeout=600):
  1045. embedding_model = None
  1046. if dataset.indexing_technique == 'high_quality':
  1047. model_manager = ModelManager()
  1048. embedding_model = model_manager.get_model_instance(
  1049. tenant_id=current_user.current_tenant_id,
  1050. provider=dataset.embedding_model_provider,
  1051. model_type=ModelType.TEXT_EMBEDDING,
  1052. model=dataset.embedding_model
  1053. )
  1054. max_position = db.session.query(func.max(DocumentSegment.position)).filter(
  1055. DocumentSegment.document_id == document.id
  1056. ).scalar()
  1057. pre_segment_data_list = []
  1058. segment_data_list = []
  1059. keywords_list = []
  1060. for segment_item in segments:
  1061. content = segment_item['content']
  1062. doc_id = str(uuid.uuid4())
  1063. segment_hash = helper.generate_text_hash(content)
  1064. tokens = 0
  1065. if dataset.indexing_technique == 'high_quality' and embedding_model:
  1066. # calc embedding use tokens
  1067. model_type_instance = cast(TextEmbeddingModel, embedding_model.model_type_instance)
  1068. tokens = model_type_instance.get_num_tokens(
  1069. model=embedding_model.model,
  1070. credentials=embedding_model.credentials,
  1071. texts=[content]
  1072. )
  1073. segment_document = DocumentSegment(
  1074. tenant_id=current_user.current_tenant_id,
  1075. dataset_id=document.dataset_id,
  1076. document_id=document.id,
  1077. index_node_id=doc_id,
  1078. index_node_hash=segment_hash,
  1079. position=max_position + 1 if max_position else 1,
  1080. content=content,
  1081. word_count=len(content),
  1082. tokens=tokens,
  1083. status='completed',
  1084. indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  1085. completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  1086. created_by=current_user.id
  1087. )
  1088. if document.doc_form == 'qa_model':
  1089. segment_document.answer = segment_item['answer']
  1090. db.session.add(segment_document)
  1091. segment_data_list.append(segment_document)
  1092. pre_segment_data_list.append(segment_document)
  1093. keywords_list.append(segment_item['keywords'])
  1094. try:
  1095. # save vector index
  1096. VectorService.create_segments_vector(keywords_list, pre_segment_data_list, dataset)
  1097. except Exception as e:
  1098. logging.exception("create segment index failed")
  1099. for segment_document in segment_data_list:
  1100. segment_document.enabled = False
  1101. segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1102. segment_document.status = 'error'
  1103. segment_document.error = str(e)
  1104. db.session.commit()
  1105. return segment_data_list
  1106. @classmethod
  1107. def update_segment(cls, args: dict, segment: DocumentSegment, document: Document, dataset: Dataset):
  1108. indexing_cache_key = 'segment_{}_indexing'.format(segment.id)
  1109. cache_result = redis_client.get(indexing_cache_key)
  1110. if cache_result is not None:
  1111. raise ValueError("Segment is indexing, please try again later")
  1112. try:
  1113. content = args['content']
  1114. if segment.content == content:
  1115. if document.doc_form == 'qa_model':
  1116. segment.answer = args['answer']
  1117. if 'keywords' in args and args['keywords']:
  1118. segment.keywords = args['keywords']
  1119. if 'enabled' in args and args['enabled'] is not None:
  1120. segment.enabled = args['enabled']
  1121. db.session.add(segment)
  1122. db.session.commit()
  1123. # update segment index task
  1124. if args['keywords']:
  1125. keyword = Keyword(dataset)
  1126. keyword.delete_by_ids([segment.index_node_id])
  1127. document = RAGDocument(
  1128. page_content=segment.content,
  1129. metadata={
  1130. "doc_id": segment.index_node_id,
  1131. "doc_hash": segment.index_node_hash,
  1132. "document_id": segment.document_id,
  1133. "dataset_id": segment.dataset_id,
  1134. }
  1135. )
  1136. keyword.add_texts([document], keywords_list=[args['keywords']])
  1137. else:
  1138. segment_hash = helper.generate_text_hash(content)
  1139. tokens = 0
  1140. if dataset.indexing_technique == 'high_quality':
  1141. model_manager = ModelManager()
  1142. embedding_model = model_manager.get_model_instance(
  1143. tenant_id=current_user.current_tenant_id,
  1144. provider=dataset.embedding_model_provider,
  1145. model_type=ModelType.TEXT_EMBEDDING,
  1146. model=dataset.embedding_model
  1147. )
  1148. # calc embedding use tokens
  1149. model_type_instance = cast(TextEmbeddingModel, embedding_model.model_type_instance)
  1150. tokens = model_type_instance.get_num_tokens(
  1151. model=embedding_model.model,
  1152. credentials=embedding_model.credentials,
  1153. texts=[content]
  1154. )
  1155. segment.content = content
  1156. segment.index_node_hash = segment_hash
  1157. segment.word_count = len(content)
  1158. segment.tokens = tokens
  1159. segment.status = 'completed'
  1160. segment.indexing_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1161. segment.completed_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1162. segment.updated_by = current_user.id
  1163. segment.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1164. if document.doc_form == 'qa_model':
  1165. segment.answer = args['answer']
  1166. db.session.add(segment)
  1167. db.session.commit()
  1168. # update segment vector index
  1169. VectorService.update_segment_vector(args['keywords'], segment, dataset)
  1170. except Exception as e:
  1171. logging.exception("update segment index failed")
  1172. segment.enabled = False
  1173. segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1174. segment.status = 'error'
  1175. segment.error = str(e)
  1176. db.session.commit()
  1177. segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment.id).first()
  1178. return segment
  1179. @classmethod
  1180. def delete_segment(cls, segment: DocumentSegment, document: Document, dataset: Dataset):
  1181. indexing_cache_key = 'segment_{}_delete_indexing'.format(segment.id)
  1182. cache_result = redis_client.get(indexing_cache_key)
  1183. if cache_result is not None:
  1184. raise ValueError("Segment is deleting.")
  1185. # enabled segment need to delete index
  1186. if segment.enabled:
  1187. # send delete segment index task
  1188. redis_client.setex(indexing_cache_key, 600, 1)
  1189. delete_segment_from_index_task.delay(segment.id, segment.index_node_id, dataset.id, document.id)
  1190. db.session.delete(segment)
  1191. db.session.commit()
  1192. class DatasetCollectionBindingService:
  1193. @classmethod
  1194. def get_dataset_collection_binding(cls, provider_name: str, model_name: str,
  1195. collection_type: str = 'dataset') -> DatasetCollectionBinding:
  1196. dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
  1197. filter(DatasetCollectionBinding.provider_name == provider_name,
  1198. DatasetCollectionBinding.model_name == model_name,
  1199. DatasetCollectionBinding.type == collection_type). \
  1200. order_by(DatasetCollectionBinding.created_at). \
  1201. first()
  1202. if not dataset_collection_binding:
  1203. dataset_collection_binding = DatasetCollectionBinding(
  1204. provider_name=provider_name,
  1205. model_name=model_name,
  1206. collection_name=Dataset.gen_collection_name_by_id(str(uuid.uuid4())),
  1207. type=collection_type
  1208. )
  1209. db.session.add(dataset_collection_binding)
  1210. db.session.commit()
  1211. return dataset_collection_binding
  1212. @classmethod
  1213. def get_dataset_collection_binding_by_id_and_type(cls, collection_binding_id: str,
  1214. collection_type: str = 'dataset') -> DatasetCollectionBinding:
  1215. dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
  1216. filter(DatasetCollectionBinding.id == collection_binding_id,
  1217. DatasetCollectionBinding.type == collection_type). \
  1218. order_by(DatasetCollectionBinding.created_at). \
  1219. first()
  1220. return dataset_collection_binding