Waffle 07add06c59 Feat/add zhipu CogView 3 tool (#6210) 9 mesiacov pred
..
configs 63e34e5227 feat: support MyScale vector database (#6092) 9 mesiacov pred
constants 6ef401a9f0 feat:add tts-streaming config and future (#5492) 9 mesiacov pred
controllers 1df71ec64d refactor(api): switch to dify_config with Pydantic in controllers and schedule (#6237) 9 mesiacov pred
core 07add06c59 Feat/add zhipu CogView 3 tool (#6210) 9 mesiacov pred
docker cb09dbef66 feat: correctly delete applications using Celery workers (#5787) 9 mesiacov pred
events cb09dbef66 feat: correctly delete applications using Celery workers (#5787) 9 mesiacov pred
extensions 678ad6b7eb Fix/file stream azure blob (#6196) 9 mesiacov pred
fields 9622fbb62f feat: app rate limit (#5844) 9 mesiacov pred
libs 9622fbb62f feat: app rate limit (#5844) 9 mesiacov pred
migrations 9622fbb62f feat: app rate limit (#5844) 9 mesiacov pred
models 9622fbb62f feat: app rate limit (#5844) 9 mesiacov pred
schedule 1df71ec64d refactor(api): switch to dify_config with Pydantic in controllers and schedule (#6237) 9 mesiacov pred
services 7b225a5ab0 refactor(services/tasks): Swtich to dify_config witch Pydantic (#6203) 9 mesiacov pred
tasks 7b225a5ab0 refactor(services/tasks): Swtich to dify_config witch Pydantic (#6203) 9 mesiacov pred
templates 00b4cc3cd4 feat: implement forgot password feature (#5534) 9 mesiacov pred
tests 63e34e5227 feat: support MyScale vector database (#6092) 9 mesiacov pred
.dockerignore 27f0ae8416 build: support Poetry for depencencies tool in api's Dockerfile (#5105) 10 mesiacov pred
.env.example 63e34e5227 feat: support MyScale vector database (#6092) 9 mesiacov pred
Dockerfile 9b7c74a5d9 chore: skip pip upgrade preparation in api dockerfile (#5999) 9 mesiacov pred
README.md 2d6624cf9e typo: Update README.md (#5987) 9 mesiacov pred
app.py d7f75d17cc Chore/remove-unused-code (#5917) 9 mesiacov pred
commands.py 7c70eb87bc feat: support AnalyticDB vector store (#5586) 9 mesiacov pred
poetry.lock 63e34e5227 feat: support MyScale vector database (#6092) 9 mesiacov pred
poetry.toml f62f71a81a build: initial support for poetry build tool (#4513) 10 mesiacov pred
pyproject.toml 63e34e5227 feat: support MyScale vector database (#6092) 9 mesiacov pred

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   docker compose -f docker-compose.middleware.yaml -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000...
  3. If you need to debug local async processing, please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh