completion.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279
  1. import logging
  2. from typing import Optional, List, Union
  3. from requests.exceptions import ChunkedEncodingError
  4. from core.agent.agent_executor import AgentExecuteResult, PlanningStrategy
  5. from core.callback_handler.main_chain_gather_callback_handler import MainChainGatherCallbackHandler
  6. from core.callback_handler.llm_callback_handler import LLMCallbackHandler
  7. from core.chain.sensitive_word_avoidance_chain import SensitiveWordAvoidanceError
  8. from core.conversation_message_task import ConversationMessageTask, ConversationTaskStoppedException
  9. from core.model_providers.error import LLMBadRequestError
  10. from core.memory.read_only_conversation_token_db_buffer_shared_memory import \
  11. ReadOnlyConversationTokenDBBufferSharedMemory
  12. from core.model_providers.model_factory import ModelFactory
  13. from core.model_providers.models.entity.message import PromptMessage
  14. from core.model_providers.models.llm.base import BaseLLM
  15. from core.orchestrator_rule_parser import OrchestratorRuleParser
  16. from core.prompt.prompt_template import PromptTemplateParser
  17. from models.model import App, AppModelConfig, Account, Conversation, EndUser
  18. class Completion:
  19. @classmethod
  20. def generate(cls, task_id: str, app: App, app_model_config: AppModelConfig, query: str, inputs: dict,
  21. user: Union[Account, EndUser], conversation: Optional[Conversation], streaming: bool,
  22. is_override: bool = False, retriever_from: str = 'dev'):
  23. """
  24. errors: ProviderTokenNotInitError
  25. """
  26. query = PromptTemplateParser.remove_template_variables(query)
  27. memory = None
  28. if conversation:
  29. # get memory of conversation (read-only)
  30. memory = cls.get_memory_from_conversation(
  31. tenant_id=app.tenant_id,
  32. app_model_config=app_model_config,
  33. conversation=conversation,
  34. return_messages=False
  35. )
  36. inputs = conversation.inputs
  37. final_model_instance = ModelFactory.get_text_generation_model_from_model_config(
  38. tenant_id=app.tenant_id,
  39. model_config=app_model_config.model_dict,
  40. streaming=streaming
  41. )
  42. conversation_message_task = ConversationMessageTask(
  43. task_id=task_id,
  44. app=app,
  45. app_model_config=app_model_config,
  46. user=user,
  47. conversation=conversation,
  48. is_override=is_override,
  49. inputs=inputs,
  50. query=query,
  51. streaming=streaming,
  52. model_instance=final_model_instance
  53. )
  54. rest_tokens_for_context_and_memory = cls.get_validate_rest_tokens(
  55. mode=app.mode,
  56. model_instance=final_model_instance,
  57. app_model_config=app_model_config,
  58. query=query,
  59. inputs=inputs
  60. )
  61. # init orchestrator rule parser
  62. orchestrator_rule_parser = OrchestratorRuleParser(
  63. tenant_id=app.tenant_id,
  64. app_model_config=app_model_config
  65. )
  66. try:
  67. # parse sensitive_word_avoidance_chain
  68. chain_callback = MainChainGatherCallbackHandler(conversation_message_task)
  69. sensitive_word_avoidance_chain = orchestrator_rule_parser.to_sensitive_word_avoidance_chain(
  70. final_model_instance, [chain_callback])
  71. if sensitive_word_avoidance_chain:
  72. try:
  73. query = sensitive_word_avoidance_chain.run(query)
  74. except SensitiveWordAvoidanceError as ex:
  75. cls.run_final_llm(
  76. model_instance=final_model_instance,
  77. mode=app.mode,
  78. app_model_config=app_model_config,
  79. query=query,
  80. inputs=inputs,
  81. agent_execute_result=None,
  82. conversation_message_task=conversation_message_task,
  83. memory=memory,
  84. fake_response=ex.message
  85. )
  86. return
  87. # get agent executor
  88. agent_executor = orchestrator_rule_parser.to_agent_executor(
  89. conversation_message_task=conversation_message_task,
  90. memory=memory,
  91. rest_tokens=rest_tokens_for_context_and_memory,
  92. chain_callback=chain_callback,
  93. retriever_from=retriever_from
  94. )
  95. query_for_agent = cls.get_query_for_agent(app, app_model_config, query, inputs)
  96. # run agent executor
  97. agent_execute_result = None
  98. if query_for_agent and agent_executor:
  99. should_use_agent = agent_executor.should_use_agent(query_for_agent)
  100. if should_use_agent:
  101. agent_execute_result = agent_executor.run(query_for_agent)
  102. # When no extra pre prompt is specified,
  103. # the output of the agent can be used directly as the main output content without calling LLM again
  104. fake_response = None
  105. if not app_model_config.pre_prompt and agent_execute_result and agent_execute_result.output \
  106. and agent_execute_result.strategy not in [PlanningStrategy.ROUTER,
  107. PlanningStrategy.REACT_ROUTER]:
  108. fake_response = agent_execute_result.output
  109. # run the final llm
  110. cls.run_final_llm(
  111. model_instance=final_model_instance,
  112. mode=app.mode,
  113. app_model_config=app_model_config,
  114. query=query,
  115. inputs=inputs,
  116. agent_execute_result=agent_execute_result,
  117. conversation_message_task=conversation_message_task,
  118. memory=memory,
  119. fake_response=fake_response
  120. )
  121. except ConversationTaskStoppedException:
  122. return
  123. except ChunkedEncodingError as e:
  124. # Interrupt by LLM (like OpenAI), handle it.
  125. logging.warning(f'ChunkedEncodingError: {e}')
  126. conversation_message_task.end()
  127. return
  128. @classmethod
  129. def get_query_for_agent(cls, app: App, app_model_config: AppModelConfig, query: str, inputs: dict) -> str:
  130. if app.mode != 'completion':
  131. return query
  132. return inputs.get(app_model_config.dataset_query_variable, "")
  133. @classmethod
  134. def run_final_llm(cls, model_instance: BaseLLM, mode: str, app_model_config: AppModelConfig, query: str,
  135. inputs: dict,
  136. agent_execute_result: Optional[AgentExecuteResult],
  137. conversation_message_task: ConversationMessageTask,
  138. memory: Optional[ReadOnlyConversationTokenDBBufferSharedMemory],
  139. fake_response: Optional[str]):
  140. # get llm prompt
  141. if app_model_config.prompt_type == 'simple':
  142. prompt_messages, stop_words = model_instance.get_prompt(
  143. mode=mode,
  144. pre_prompt=app_model_config.pre_prompt,
  145. inputs=inputs,
  146. query=query,
  147. context=agent_execute_result.output if agent_execute_result else None,
  148. memory=memory
  149. )
  150. else:
  151. prompt_messages = model_instance.get_advanced_prompt(
  152. app_mode=mode,
  153. app_model_config=app_model_config,
  154. inputs=inputs,
  155. query=query,
  156. context=agent_execute_result.output if agent_execute_result else None,
  157. memory=memory
  158. )
  159. model_config = app_model_config.model_dict
  160. completion_params = model_config.get("completion_params", {})
  161. stop_words = completion_params.get("stop", [])
  162. cls.recale_llm_max_tokens(
  163. model_instance=model_instance,
  164. prompt_messages=prompt_messages,
  165. )
  166. response = model_instance.run(
  167. messages=prompt_messages,
  168. stop=stop_words if stop_words else None,
  169. callbacks=[LLMCallbackHandler(model_instance, conversation_message_task)],
  170. fake_response=fake_response
  171. )
  172. return response
  173. @classmethod
  174. def get_history_messages_from_memory(cls, memory: ReadOnlyConversationTokenDBBufferSharedMemory,
  175. max_token_limit: int) -> str:
  176. """Get memory messages."""
  177. memory.max_token_limit = max_token_limit
  178. memory_key = memory.memory_variables[0]
  179. external_context = memory.load_memory_variables({})
  180. return external_context[memory_key]
  181. @classmethod
  182. def get_memory_from_conversation(cls, tenant_id: str, app_model_config: AppModelConfig,
  183. conversation: Conversation,
  184. **kwargs) -> ReadOnlyConversationTokenDBBufferSharedMemory:
  185. # only for calc token in memory
  186. memory_model_instance = ModelFactory.get_text_generation_model_from_model_config(
  187. tenant_id=tenant_id,
  188. model_config=app_model_config.model_dict
  189. )
  190. # use llm config from conversation
  191. memory = ReadOnlyConversationTokenDBBufferSharedMemory(
  192. conversation=conversation,
  193. model_instance=memory_model_instance,
  194. max_token_limit=kwargs.get("max_token_limit", 2048),
  195. memory_key=kwargs.get("memory_key", "chat_history"),
  196. return_messages=kwargs.get("return_messages", True),
  197. input_key=kwargs.get("input_key", "input"),
  198. output_key=kwargs.get("output_key", "output"),
  199. message_limit=kwargs.get("message_limit", 10),
  200. )
  201. return memory
  202. @classmethod
  203. def get_validate_rest_tokens(cls, mode: str, model_instance: BaseLLM, app_model_config: AppModelConfig,
  204. query: str, inputs: dict) -> int:
  205. model_limited_tokens = model_instance.model_rules.max_tokens.max
  206. max_tokens = model_instance.get_model_kwargs().max_tokens
  207. if model_limited_tokens is None:
  208. return -1
  209. if max_tokens is None:
  210. max_tokens = 0
  211. # get prompt without memory and context
  212. prompt_messages, _ = model_instance.get_prompt(
  213. mode=mode,
  214. pre_prompt=app_model_config.pre_prompt,
  215. inputs=inputs,
  216. query=query,
  217. context=None,
  218. memory=None
  219. )
  220. prompt_tokens = model_instance.get_num_tokens(prompt_messages)
  221. rest_tokens = model_limited_tokens - max_tokens - prompt_tokens
  222. if rest_tokens < 0:
  223. raise LLMBadRequestError("Query or prefix prompt is too long, you can reduce the prefix prompt, "
  224. "or shrink the max token, or switch to a llm with a larger token limit size.")
  225. return rest_tokens
  226. @classmethod
  227. def recale_llm_max_tokens(cls, model_instance: BaseLLM, prompt_messages: List[PromptMessage]):
  228. # recalc max_tokens if sum(prompt_token + max_tokens) over model token limit
  229. model_limited_tokens = model_instance.model_rules.max_tokens.max
  230. max_tokens = model_instance.get_model_kwargs().max_tokens
  231. if model_limited_tokens is None:
  232. return
  233. if max_tokens is None:
  234. max_tokens = 0
  235. prompt_tokens = model_instance.get_num_tokens(prompt_messages)
  236. if prompt_tokens + max_tokens > model_limited_tokens:
  237. max_tokens = max(model_limited_tokens - prompt_tokens, 16)
  238. # update model instance max tokens
  239. model_kwargs = model_instance.get_model_kwargs()
  240. model_kwargs.max_tokens = max_tokens
  241. model_instance.set_model_kwargs(model_kwargs)