datasets.py 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511
  1. import flask_restful
  2. from flask import current_app, request
  3. from flask_login import current_user
  4. from flask_restful import Resource, marshal, marshal_with, reqparse
  5. from werkzeug.exceptions import Forbidden, NotFound
  6. import services
  7. from controllers.console import api
  8. from controllers.console.apikey import api_key_fields, api_key_list
  9. from controllers.console.app.error import ProviderNotInitializeError
  10. from controllers.console.datasets.error import DatasetNameDuplicateError
  11. from controllers.console.setup import setup_required
  12. from controllers.console.wraps import account_initialization_required
  13. from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
  14. from core.indexing_runner import IndexingRunner
  15. from core.model_runtime.entities.model_entities import ModelType
  16. from core.provider_manager import ProviderManager
  17. from extensions.ext_database import db
  18. from fields.app_fields import related_app_list
  19. from fields.dataset_fields import dataset_detail_fields, dataset_query_detail_fields
  20. from fields.document_fields import document_status_fields
  21. from libs.login import login_required
  22. from models.dataset import Dataset, Document, DocumentSegment
  23. from models.model import ApiToken, UploadFile
  24. from services.dataset_service import DatasetService, DocumentService
  25. def _validate_name(name):
  26. if not name or len(name) < 1 or len(name) > 40:
  27. raise ValueError('Name must be between 1 to 40 characters.')
  28. return name
  29. def _validate_description_length(description):
  30. if len(description) > 400:
  31. raise ValueError('Description cannot exceed 400 characters.')
  32. return description
  33. class DatasetListApi(Resource):
  34. @setup_required
  35. @login_required
  36. @account_initialization_required
  37. def get(self):
  38. page = request.args.get('page', default=1, type=int)
  39. limit = request.args.get('limit', default=20, type=int)
  40. ids = request.args.getlist('ids')
  41. provider = request.args.get('provider', default="vendor")
  42. if ids:
  43. datasets, total = DatasetService.get_datasets_by_ids(ids, current_user.current_tenant_id)
  44. else:
  45. datasets, total = DatasetService.get_datasets(page, limit, provider,
  46. current_user.current_tenant_id, current_user)
  47. # check embedding setting
  48. provider_manager = ProviderManager()
  49. configurations = provider_manager.get_configurations(
  50. tenant_id=current_user.current_tenant_id
  51. )
  52. embedding_models = configurations.get_models(
  53. model_type=ModelType.TEXT_EMBEDDING,
  54. only_active=True
  55. )
  56. model_names = []
  57. for embedding_model in embedding_models:
  58. model_names.append(f"{embedding_model.model}:{embedding_model.provider.provider}")
  59. data = marshal(datasets, dataset_detail_fields)
  60. for item in data:
  61. if item['indexing_technique'] == 'high_quality':
  62. item_model = f"{item['embedding_model']}:{item['embedding_model_provider']}"
  63. if item_model in model_names:
  64. item['embedding_available'] = True
  65. else:
  66. item['embedding_available'] = False
  67. else:
  68. item['embedding_available'] = True
  69. response = {
  70. 'data': data,
  71. 'has_more': len(datasets) == limit,
  72. 'limit': limit,
  73. 'total': total,
  74. 'page': page
  75. }
  76. return response, 200
  77. @setup_required
  78. @login_required
  79. @account_initialization_required
  80. def post(self):
  81. parser = reqparse.RequestParser()
  82. parser.add_argument('name', nullable=False, required=True,
  83. help='type is required. Name must be between 1 to 40 characters.',
  84. type=_validate_name)
  85. parser.add_argument('indexing_technique', type=str, location='json',
  86. choices=Dataset.INDEXING_TECHNIQUE_LIST,
  87. nullable=True,
  88. help='Invalid indexing technique.')
  89. args = parser.parse_args()
  90. # The role of the current user in the ta table must be admin or owner
  91. if not current_user.is_admin_or_owner:
  92. raise Forbidden()
  93. try:
  94. dataset = DatasetService.create_empty_dataset(
  95. tenant_id=current_user.current_tenant_id,
  96. name=args['name'],
  97. indexing_technique=args['indexing_technique'],
  98. account=current_user
  99. )
  100. except services.errors.dataset.DatasetNameDuplicateError:
  101. raise DatasetNameDuplicateError()
  102. return marshal(dataset, dataset_detail_fields), 201
  103. class DatasetApi(Resource):
  104. @setup_required
  105. @login_required
  106. @account_initialization_required
  107. def get(self, dataset_id):
  108. dataset_id_str = str(dataset_id)
  109. dataset = DatasetService.get_dataset(dataset_id_str)
  110. if dataset is None:
  111. raise NotFound("Dataset not found.")
  112. try:
  113. DatasetService.check_dataset_permission(
  114. dataset, current_user)
  115. except services.errors.account.NoPermissionError as e:
  116. raise Forbidden(str(e))
  117. data = marshal(dataset, dataset_detail_fields)
  118. # check embedding setting
  119. provider_manager = ProviderManager()
  120. configurations = provider_manager.get_configurations(
  121. tenant_id=current_user.current_tenant_id
  122. )
  123. embedding_models = configurations.get_models(
  124. model_type=ModelType.TEXT_EMBEDDING,
  125. only_active=True
  126. )
  127. model_names = []
  128. for embedding_model in embedding_models:
  129. model_names.append(f"{embedding_model.model}:{embedding_model.provider.provider}")
  130. if data['indexing_technique'] == 'high_quality':
  131. item_model = f"{data['embedding_model']}:{data['embedding_model_provider']}"
  132. if item_model in model_names:
  133. data['embedding_available'] = True
  134. else:
  135. data['embedding_available'] = False
  136. else:
  137. data['embedding_available'] = True
  138. return data, 200
  139. @setup_required
  140. @login_required
  141. @account_initialization_required
  142. def patch(self, dataset_id):
  143. dataset_id_str = str(dataset_id)
  144. dataset = DatasetService.get_dataset(dataset_id_str)
  145. if dataset is None:
  146. raise NotFound("Dataset not found.")
  147. # check user's model setting
  148. DatasetService.check_dataset_model_setting(dataset)
  149. parser = reqparse.RequestParser()
  150. parser.add_argument('name', nullable=False,
  151. help='type is required. Name must be between 1 to 40 characters.',
  152. type=_validate_name)
  153. parser.add_argument('description',
  154. location='json', store_missing=False,
  155. type=_validate_description_length)
  156. parser.add_argument('indexing_technique', type=str, location='json',
  157. choices=Dataset.INDEXING_TECHNIQUE_LIST,
  158. nullable=True,
  159. help='Invalid indexing technique.')
  160. parser.add_argument('permission', type=str, location='json', choices=(
  161. 'only_me', 'all_team_members'), help='Invalid permission.')
  162. parser.add_argument('retrieval_model', type=dict, location='json', help='Invalid retrieval model.')
  163. args = parser.parse_args()
  164. # The role of the current user in the ta table must be admin or owner
  165. if not current_user.is_admin_or_owner:
  166. raise Forbidden()
  167. dataset = DatasetService.update_dataset(
  168. dataset_id_str, args, current_user)
  169. if dataset is None:
  170. raise NotFound("Dataset not found.")
  171. return marshal(dataset, dataset_detail_fields), 200
  172. @setup_required
  173. @login_required
  174. @account_initialization_required
  175. def delete(self, dataset_id):
  176. dataset_id_str = str(dataset_id)
  177. # The role of the current user in the ta table must be admin or owner
  178. if not current_user.is_admin_or_owner:
  179. raise Forbidden()
  180. if DatasetService.delete_dataset(dataset_id_str, current_user):
  181. return {'result': 'success'}, 204
  182. else:
  183. raise NotFound("Dataset not found.")
  184. class DatasetQueryApi(Resource):
  185. @setup_required
  186. @login_required
  187. @account_initialization_required
  188. def get(self, dataset_id):
  189. dataset_id_str = str(dataset_id)
  190. dataset = DatasetService.get_dataset(dataset_id_str)
  191. if dataset is None:
  192. raise NotFound("Dataset not found.")
  193. try:
  194. DatasetService.check_dataset_permission(dataset, current_user)
  195. except services.errors.account.NoPermissionError as e:
  196. raise Forbidden(str(e))
  197. page = request.args.get('page', default=1, type=int)
  198. limit = request.args.get('limit', default=20, type=int)
  199. dataset_queries, total = DatasetService.get_dataset_queries(
  200. dataset_id=dataset.id,
  201. page=page,
  202. per_page=limit
  203. )
  204. response = {
  205. 'data': marshal(dataset_queries, dataset_query_detail_fields),
  206. 'has_more': len(dataset_queries) == limit,
  207. 'limit': limit,
  208. 'total': total,
  209. 'page': page
  210. }
  211. return response, 200
  212. class DatasetIndexingEstimateApi(Resource):
  213. @setup_required
  214. @login_required
  215. @account_initialization_required
  216. def post(self):
  217. parser = reqparse.RequestParser()
  218. parser.add_argument('info_list', type=dict, required=True, nullable=True, location='json')
  219. parser.add_argument('process_rule', type=dict, required=True, nullable=True, location='json')
  220. parser.add_argument('indexing_technique', type=str, required=True,
  221. choices=Dataset.INDEXING_TECHNIQUE_LIST,
  222. nullable=True, location='json')
  223. parser.add_argument('doc_form', type=str, default='text_model', required=False, nullable=False, location='json')
  224. parser.add_argument('dataset_id', type=str, required=False, nullable=False, location='json')
  225. parser.add_argument('doc_language', type=str, default='English', required=False, nullable=False,
  226. location='json')
  227. args = parser.parse_args()
  228. # validate args
  229. DocumentService.estimate_args_validate(args)
  230. if args['info_list']['data_source_type'] == 'upload_file':
  231. file_ids = args['info_list']['file_info_list']['file_ids']
  232. file_details = db.session.query(UploadFile).filter(
  233. UploadFile.tenant_id == current_user.current_tenant_id,
  234. UploadFile.id.in_(file_ids)
  235. ).all()
  236. if file_details is None:
  237. raise NotFound("File not found.")
  238. indexing_runner = IndexingRunner()
  239. try:
  240. response = indexing_runner.file_indexing_estimate(current_user.current_tenant_id, file_details,
  241. args['process_rule'], args['doc_form'],
  242. args['doc_language'], args['dataset_id'],
  243. args['indexing_technique'])
  244. except LLMBadRequestError:
  245. raise ProviderNotInitializeError(
  246. "No Embedding Model available. Please configure a valid provider "
  247. "in the Settings -> Model Provider.")
  248. except ProviderTokenNotInitError as ex:
  249. raise ProviderNotInitializeError(ex.description)
  250. elif args['info_list']['data_source_type'] == 'notion_import':
  251. indexing_runner = IndexingRunner()
  252. try:
  253. response = indexing_runner.notion_indexing_estimate(current_user.current_tenant_id,
  254. args['info_list']['notion_info_list'],
  255. args['process_rule'], args['doc_form'],
  256. args['doc_language'], args['dataset_id'],
  257. args['indexing_technique'])
  258. except LLMBadRequestError:
  259. raise ProviderNotInitializeError(
  260. "No Embedding Model available. Please configure a valid provider "
  261. "in the Settings -> Model Provider.")
  262. except ProviderTokenNotInitError as ex:
  263. raise ProviderNotInitializeError(ex.description)
  264. else:
  265. raise ValueError('Data source type not support')
  266. return response, 200
  267. class DatasetRelatedAppListApi(Resource):
  268. @setup_required
  269. @login_required
  270. @account_initialization_required
  271. @marshal_with(related_app_list)
  272. def get(self, dataset_id):
  273. dataset_id_str = str(dataset_id)
  274. dataset = DatasetService.get_dataset(dataset_id_str)
  275. if dataset is None:
  276. raise NotFound("Dataset not found.")
  277. try:
  278. DatasetService.check_dataset_permission(dataset, current_user)
  279. except services.errors.account.NoPermissionError as e:
  280. raise Forbidden(str(e))
  281. app_dataset_joins = DatasetService.get_related_apps(dataset.id)
  282. related_apps = []
  283. for app_dataset_join in app_dataset_joins:
  284. app_model = app_dataset_join.app
  285. if app_model:
  286. related_apps.append(app_model)
  287. return {
  288. 'data': related_apps,
  289. 'total': len(related_apps)
  290. }, 200
  291. class DatasetIndexingStatusApi(Resource):
  292. @setup_required
  293. @login_required
  294. @account_initialization_required
  295. def get(self, dataset_id):
  296. dataset_id = str(dataset_id)
  297. documents = db.session.query(Document).filter(
  298. Document.dataset_id == dataset_id,
  299. Document.tenant_id == current_user.current_tenant_id
  300. ).all()
  301. documents_status = []
  302. for document in documents:
  303. completed_segments = DocumentSegment.query.filter(DocumentSegment.completed_at.isnot(None),
  304. DocumentSegment.document_id == str(document.id),
  305. DocumentSegment.status != 're_segment').count()
  306. total_segments = DocumentSegment.query.filter(DocumentSegment.document_id == str(document.id),
  307. DocumentSegment.status != 're_segment').count()
  308. document.completed_segments = completed_segments
  309. document.total_segments = total_segments
  310. documents_status.append(marshal(document, document_status_fields))
  311. data = {
  312. 'data': documents_status
  313. }
  314. return data
  315. class DatasetApiKeyApi(Resource):
  316. max_keys = 10
  317. token_prefix = 'dataset-'
  318. resource_type = 'dataset'
  319. @setup_required
  320. @login_required
  321. @account_initialization_required
  322. @marshal_with(api_key_list)
  323. def get(self):
  324. keys = db.session.query(ApiToken). \
  325. filter(ApiToken.type == self.resource_type, ApiToken.tenant_id == current_user.current_tenant_id). \
  326. all()
  327. return {"items": keys}
  328. @setup_required
  329. @login_required
  330. @account_initialization_required
  331. @marshal_with(api_key_fields)
  332. def post(self):
  333. # The role of the current user in the ta table must be admin or owner
  334. if not current_user.is_admin_or_owner:
  335. raise Forbidden()
  336. current_key_count = db.session.query(ApiToken). \
  337. filter(ApiToken.type == self.resource_type, ApiToken.tenant_id == current_user.current_tenant_id). \
  338. count()
  339. if current_key_count >= self.max_keys:
  340. flask_restful.abort(
  341. 400,
  342. message=f"Cannot create more than {self.max_keys} API keys for this resource type.",
  343. code='max_keys_exceeded'
  344. )
  345. key = ApiToken.generate_api_key(self.token_prefix, 24)
  346. api_token = ApiToken()
  347. api_token.tenant_id = current_user.current_tenant_id
  348. api_token.token = key
  349. api_token.type = self.resource_type
  350. db.session.add(api_token)
  351. db.session.commit()
  352. return api_token, 200
  353. class DatasetApiDeleteApi(Resource):
  354. resource_type = 'dataset'
  355. @setup_required
  356. @login_required
  357. @account_initialization_required
  358. def delete(self, api_key_id):
  359. api_key_id = str(api_key_id)
  360. # The role of the current user in the ta table must be admin or owner
  361. if not current_user.is_admin_or_owner:
  362. raise Forbidden()
  363. key = db.session.query(ApiToken). \
  364. filter(ApiToken.tenant_id == current_user.current_tenant_id, ApiToken.type == self.resource_type,
  365. ApiToken.id == api_key_id). \
  366. first()
  367. if key is None:
  368. flask_restful.abort(404, message='API key not found')
  369. db.session.query(ApiToken).filter(ApiToken.id == api_key_id).delete()
  370. db.session.commit()
  371. return {'result': 'success'}, 204
  372. class DatasetApiBaseUrlApi(Resource):
  373. @setup_required
  374. @login_required
  375. @account_initialization_required
  376. def get(self):
  377. return {
  378. 'api_base_url': (current_app.config['SERVICE_API_URL'] if current_app.config['SERVICE_API_URL']
  379. else request.host_url.rstrip('/')) + '/v1'
  380. }
  381. class DatasetRetrievalSettingApi(Resource):
  382. @setup_required
  383. @login_required
  384. @account_initialization_required
  385. def get(self):
  386. vector_type = current_app.config['VECTOR_STORE']
  387. if vector_type == 'milvus':
  388. return {
  389. 'retrieval_method': [
  390. 'semantic_search'
  391. ]
  392. }
  393. elif vector_type == 'qdrant' or vector_type == 'weaviate':
  394. return {
  395. 'retrieval_method': [
  396. 'semantic_search', 'full_text_search', 'hybrid_search'
  397. ]
  398. }
  399. else:
  400. raise ValueError("Unsupported vector db type.")
  401. class DatasetRetrievalSettingMockApi(Resource):
  402. @setup_required
  403. @login_required
  404. @account_initialization_required
  405. def get(self, vector_type):
  406. if vector_type == 'milvus':
  407. return {
  408. 'retrieval_method': [
  409. 'semantic_search'
  410. ]
  411. }
  412. elif vector_type == 'qdrant' or vector_type == 'weaviate':
  413. return {
  414. 'retrieval_method': [
  415. 'semantic_search', 'full_text_search', 'hybrid_search'
  416. ]
  417. }
  418. else:
  419. raise ValueError("Unsupported vector db type.")
  420. api.add_resource(DatasetListApi, '/datasets')
  421. api.add_resource(DatasetApi, '/datasets/<uuid:dataset_id>')
  422. api.add_resource(DatasetQueryApi, '/datasets/<uuid:dataset_id>/queries')
  423. api.add_resource(DatasetIndexingEstimateApi, '/datasets/indexing-estimate')
  424. api.add_resource(DatasetRelatedAppListApi, '/datasets/<uuid:dataset_id>/related-apps')
  425. api.add_resource(DatasetIndexingStatusApi, '/datasets/<uuid:dataset_id>/indexing-status')
  426. api.add_resource(DatasetApiKeyApi, '/datasets/api-keys')
  427. api.add_resource(DatasetApiDeleteApi, '/datasets/api-keys/<uuid:api_key_id>')
  428. api.add_resource(DatasetApiBaseUrlApi, '/datasets/api-base-info')
  429. api.add_resource(DatasetRetrievalSettingApi, '/datasets/retrieval-setting')
  430. api.add_resource(DatasetRetrievalSettingMockApi, '/datasets/retrieval-setting/<string:vector_type>')