document_indexing_task.py 2.9 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980
  1. import datetime
  2. import logging
  3. import time
  4. import click
  5. from celery import shared_task # type: ignore
  6. from configs import dify_config
  7. from core.indexing_runner import DocumentIsPausedError, IndexingRunner
  8. from extensions.ext_database import db
  9. from models.dataset import Dataset, Document
  10. from services.feature_service import FeatureService
  11. @shared_task(queue="dataset")
  12. def document_indexing_task(dataset_id: str, document_ids: list):
  13. """
  14. Async process document
  15. :param dataset_id:
  16. :param document_ids:
  17. Usage: document_indexing_task.delay(dataset_id, document_id)
  18. """
  19. documents = []
  20. start_at = time.perf_counter()
  21. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  22. if not dataset:
  23. logging.info(click.style("Dataset is not found: {}".format(dataset_id), fg="yellow"))
  24. return
  25. # check document limit
  26. features = FeatureService.get_features(dataset.tenant_id)
  27. try:
  28. if features.billing.enabled:
  29. vector_space = features.vector_space
  30. count = len(document_ids)
  31. batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)
  32. if count > batch_upload_limit:
  33. raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
  34. if 0 < vector_space.limit <= vector_space.size:
  35. raise ValueError(
  36. "Your total number of documents plus the number of uploads have over the limit of "
  37. "your subscription."
  38. )
  39. except Exception as e:
  40. for document_id in document_ids:
  41. document = (
  42. db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()
  43. )
  44. if document:
  45. document.indexing_status = "error"
  46. document.error = str(e)
  47. document.stopped_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
  48. db.session.add(document)
  49. db.session.commit()
  50. return
  51. for document_id in document_ids:
  52. logging.info(click.style("Start process document: {}".format(document_id), fg="green"))
  53. document = (
  54. db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()
  55. )
  56. if document:
  57. document.indexing_status = "parsing"
  58. document.processing_started_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
  59. documents.append(document)
  60. db.session.add(document)
  61. db.session.commit()
  62. try:
  63. indexing_runner = IndexingRunner()
  64. indexing_runner.run(documents)
  65. end_at = time.perf_counter()
  66. logging.info(click.style("Processed dataset: {} latency: {}".format(dataset_id, end_at - start_at), fg="green"))
  67. except DocumentIsPausedError as ex:
  68. logging.info(click.style(str(ex), fg="yellow"))
  69. except Exception:
  70. pass