12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144 |
- import datetime
- import json
- import logging
- import random
- import time
- import uuid
- from collections import Counter
- from typing import Any, Optional
- from flask_login import current_user # type: ignore
- from sqlalchemy import func
- from werkzeug.exceptions import NotFound
- from configs import dify_config
- from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
- from core.model_manager import ModelManager
- from core.model_runtime.entities.model_entities import ModelType
- from core.rag.index_processor.constant.index_type import IndexType
- from core.rag.retrieval.retrieval_methods import RetrievalMethod
- from events.dataset_event import dataset_was_deleted
- from events.document_event import document_was_deleted
- from extensions.ext_database import db
- from extensions.ext_redis import redis_client
- from libs import helper
- from models.account import Account, TenantAccountRole
- from models.dataset import (
- AppDatasetJoin,
- ChildChunk,
- Dataset,
- DatasetAutoDisableLog,
- DatasetCollectionBinding,
- DatasetPermission,
- DatasetPermissionEnum,
- DatasetProcessRule,
- DatasetQuery,
- Document,
- DocumentSegment,
- ExternalKnowledgeBindings,
- )
- from models.model import UploadFile
- from models.source import DataSourceOauthBinding
- from services.entities.knowledge_entities.knowledge_entities import (
- ChildChunkUpdateArgs,
- KnowledgeConfig,
- MetaDataConfig,
- RerankingModel,
- RetrievalModel,
- SegmentUpdateArgs,
- )
- from services.errors.account import InvalidActionError, NoPermissionError
- from services.errors.chunk import ChildChunkDeleteIndexError, ChildChunkIndexingError
- from services.errors.dataset import DatasetNameDuplicateError
- from services.errors.document import DocumentIndexingError
- from services.errors.file import FileNotExistsError
- from services.external_knowledge_service import ExternalDatasetService
- from services.feature_service import FeatureModel, FeatureService
- from services.tag_service import TagService
- from services.vector_service import VectorService
- from tasks.batch_clean_document_task import batch_clean_document_task
- from tasks.clean_notion_document_task import clean_notion_document_task
- from tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_task
- from tasks.delete_segment_from_index_task import delete_segment_from_index_task
- from tasks.disable_segment_from_index_task import disable_segment_from_index_task
- from tasks.disable_segments_from_index_task import disable_segments_from_index_task
- from tasks.document_indexing_task import document_indexing_task
- from tasks.document_indexing_update_task import document_indexing_update_task
- from tasks.duplicate_document_indexing_task import duplicate_document_indexing_task
- from tasks.enable_segments_to_index_task import enable_segments_to_index_task
- from tasks.recover_document_indexing_task import recover_document_indexing_task
- from tasks.retry_document_indexing_task import retry_document_indexing_task
- from tasks.sync_website_document_indexing_task import sync_website_document_indexing_task
- class DatasetService:
- @staticmethod
- def get_datasets(page, per_page, tenant_id=None, user=None, search=None, tag_ids=None, include_all=False):
- query = Dataset.query.filter(Dataset.tenant_id == tenant_id).order_by(Dataset.created_at.desc())
- if user:
- # get permitted dataset ids
- dataset_permission = DatasetPermission.query.filter_by(account_id=user.id, tenant_id=tenant_id).all()
- permitted_dataset_ids = {dp.dataset_id for dp in dataset_permission} if dataset_permission else None
- if user.current_role == TenantAccountRole.DATASET_OPERATOR:
- # only show datasets that the user has permission to access
- if permitted_dataset_ids:
- query = query.filter(Dataset.id.in_(permitted_dataset_ids))
- else:
- return [], 0
- else:
- if user.current_role != TenantAccountRole.OWNER or not include_all:
- # show all datasets that the user has permission to access
- if permitted_dataset_ids:
- query = query.filter(
- db.or_(
- Dataset.permission == DatasetPermissionEnum.ALL_TEAM,
- db.and_(
- Dataset.permission == DatasetPermissionEnum.ONLY_ME, Dataset.created_by == user.id
- ),
- db.and_(
- Dataset.permission == DatasetPermissionEnum.PARTIAL_TEAM,
- Dataset.id.in_(permitted_dataset_ids),
- ),
- )
- )
- else:
- query = query.filter(
- db.or_(
- Dataset.permission == DatasetPermissionEnum.ALL_TEAM,
- db.and_(
- Dataset.permission == DatasetPermissionEnum.ONLY_ME, Dataset.created_by == user.id
- ),
- )
- )
- else:
- # if no user, only show datasets that are shared with all team members
- query = query.filter(Dataset.permission == DatasetPermissionEnum.ALL_TEAM)
- if search:
- query = query.filter(Dataset.name.ilike(f"%{search}%"))
- if tag_ids:
- target_ids = TagService.get_target_ids_by_tag_ids("knowledge", tenant_id, tag_ids)
- if target_ids:
- query = query.filter(Dataset.id.in_(target_ids))
- else:
- return [], 0
- datasets = query.paginate(page=page, per_page=per_page, max_per_page=100, error_out=False)
- return datasets.items, datasets.total
- @staticmethod
- def get_process_rules(dataset_id):
- # get the latest process rule
- dataset_process_rule = (
- db.session.query(DatasetProcessRule)
- .filter(DatasetProcessRule.dataset_id == dataset_id)
- .order_by(DatasetProcessRule.created_at.desc())
- .limit(1)
- .one_or_none()
- )
- if dataset_process_rule:
- mode = dataset_process_rule.mode
- rules = dataset_process_rule.rules_dict
- else:
- mode = DocumentService.DEFAULT_RULES["mode"]
- rules = DocumentService.DEFAULT_RULES["rules"]
- return {"mode": mode, "rules": rules}
- @staticmethod
- def get_datasets_by_ids(ids, tenant_id):
- datasets = Dataset.query.filter(Dataset.id.in_(ids), Dataset.tenant_id == tenant_id).paginate(
- page=1, per_page=len(ids), max_per_page=len(ids), error_out=False
- )
- return datasets.items, datasets.total
- @staticmethod
- def create_empty_dataset(
- tenant_id: str,
- name: str,
- description: Optional[str],
- indexing_technique: Optional[str],
- account: Account,
- permission: Optional[str] = None,
- provider: str = "vendor",
- external_knowledge_api_id: Optional[str] = None,
- external_knowledge_id: Optional[str] = None,
- ):
- # check if dataset name already exists
- if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():
- raise DatasetNameDuplicateError(f"Dataset with name {name} already exists.")
- embedding_model = None
- if indexing_technique == "high_quality":
- model_manager = ModelManager()
- embedding_model = model_manager.get_default_model_instance(
- tenant_id=tenant_id, model_type=ModelType.TEXT_EMBEDDING
- )
- dataset = Dataset(name=name, indexing_technique=indexing_technique)
- # dataset = Dataset(name=name, provider=provider, config=config)
- dataset.description = description
- dataset.created_by = account.id
- dataset.updated_by = account.id
- dataset.tenant_id = tenant_id
- dataset.embedding_model_provider = embedding_model.provider if embedding_model else None
- dataset.embedding_model = embedding_model.model if embedding_model else None
- dataset.permission = permission or DatasetPermissionEnum.ONLY_ME
- dataset.provider = provider
- db.session.add(dataset)
- db.session.flush()
- if provider == "external" and external_knowledge_api_id:
- external_knowledge_api = ExternalDatasetService.get_external_knowledge_api(external_knowledge_api_id)
- if not external_knowledge_api:
- raise ValueError("External API template not found.")
- external_knowledge_binding = ExternalKnowledgeBindings(
- tenant_id=tenant_id,
- dataset_id=dataset.id,
- external_knowledge_api_id=external_knowledge_api_id,
- external_knowledge_id=external_knowledge_id,
- created_by=account.id,
- )
- db.session.add(external_knowledge_binding)
- db.session.commit()
- return dataset
- @staticmethod
- def get_dataset(dataset_id) -> Optional[Dataset]:
- dataset: Optional[Dataset] = Dataset.query.filter_by(id=dataset_id).first()
- return dataset
- @staticmethod
- def check_dataset_model_setting(dataset):
- if dataset.indexing_technique == "high_quality":
- try:
- model_manager = ModelManager()
- model_manager.get_model_instance(
- tenant_id=dataset.tenant_id,
- provider=dataset.embedding_model_provider,
- model_type=ModelType.TEXT_EMBEDDING,
- model=dataset.embedding_model,
- )
- except LLMBadRequestError:
- raise ValueError(
- "No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
- )
- except ProviderTokenNotInitError as ex:
- raise ValueError(f"The dataset in unavailable, due to: {ex.description}")
- @staticmethod
- def check_embedding_model_setting(tenant_id: str, embedding_model_provider: str, embedding_model: str):
- try:
- model_manager = ModelManager()
- model_manager.get_model_instance(
- tenant_id=tenant_id,
- provider=embedding_model_provider,
- model_type=ModelType.TEXT_EMBEDDING,
- model=embedding_model,
- )
- except LLMBadRequestError:
- raise ValueError(
- "No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
- )
- except ProviderTokenNotInitError as ex:
- raise ValueError(f"The dataset in unavailable, due to: {ex.description}")
- @staticmethod
- def update_dataset(dataset_id, data, user):
- dataset = DatasetService.get_dataset(dataset_id)
- if not dataset:
- raise ValueError("Dataset not found")
- DatasetService.check_dataset_permission(dataset, user)
- if dataset.provider == "external":
- external_retrieval_model = data.get("external_retrieval_model", None)
- if external_retrieval_model:
- dataset.retrieval_model = external_retrieval_model
- dataset.name = data.get("name", dataset.name)
- dataset.description = data.get("description", "")
- permission = data.get("permission")
- if permission:
- dataset.permission = permission
- external_knowledge_id = data.get("external_knowledge_id", None)
- db.session.add(dataset)
- if not external_knowledge_id:
- raise ValueError("External knowledge id is required.")
- external_knowledge_api_id = data.get("external_knowledge_api_id", None)
- if not external_knowledge_api_id:
- raise ValueError("External knowledge api id is required.")
- external_knowledge_binding = ExternalKnowledgeBindings.query.filter_by(dataset_id=dataset_id).first()
- if (
- external_knowledge_binding.external_knowledge_id != external_knowledge_id
- or external_knowledge_binding.external_knowledge_api_id != external_knowledge_api_id
- ):
- external_knowledge_binding.external_knowledge_id = external_knowledge_id
- external_knowledge_binding.external_knowledge_api_id = external_knowledge_api_id
- db.session.add(external_knowledge_binding)
- db.session.commit()
- else:
- data.pop("partial_member_list", None)
- data.pop("external_knowledge_api_id", None)
- data.pop("external_knowledge_id", None)
- data.pop("external_retrieval_model", None)
- filtered_data = {k: v for k, v in data.items() if v is not None or k == "description"}
- action = None
- if dataset.indexing_technique != data["indexing_technique"]:
- # if update indexing_technique
- if data["indexing_technique"] == "economy":
- action = "remove"
- filtered_data["embedding_model"] = None
- filtered_data["embedding_model_provider"] = None
- filtered_data["collection_binding_id"] = None
- elif data["indexing_technique"] == "high_quality":
- action = "add"
- # get embedding model setting
- try:
- model_manager = ModelManager()
- embedding_model = model_manager.get_model_instance(
- tenant_id=current_user.current_tenant_id,
- provider=data["embedding_model_provider"],
- model_type=ModelType.TEXT_EMBEDDING,
- model=data["embedding_model"],
- )
- filtered_data["embedding_model"] = embedding_model.model
- filtered_data["embedding_model_provider"] = embedding_model.provider
- dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
- embedding_model.provider, embedding_model.model
- )
- filtered_data["collection_binding_id"] = dataset_collection_binding.id
- except LLMBadRequestError:
- raise ValueError(
- "No Embedding Model available. Please configure a valid provider "
- "in the Settings -> Model Provider."
- )
- except ProviderTokenNotInitError as ex:
- raise ValueError(ex.description)
- else:
- if (
- data["embedding_model_provider"] != dataset.embedding_model_provider
- or data["embedding_model"] != dataset.embedding_model
- ):
- action = "update"
- try:
- model_manager = ModelManager()
- embedding_model = model_manager.get_model_instance(
- tenant_id=current_user.current_tenant_id,
- provider=data["embedding_model_provider"],
- model_type=ModelType.TEXT_EMBEDDING,
- model=data["embedding_model"],
- )
- filtered_data["embedding_model"] = embedding_model.model
- filtered_data["embedding_model_provider"] = embedding_model.provider
- dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
- embedding_model.provider, embedding_model.model
- )
- filtered_data["collection_binding_id"] = dataset_collection_binding.id
- except LLMBadRequestError:
- raise ValueError(
- "No Embedding Model available. Please configure a valid provider "
- "in the Settings -> Model Provider."
- )
- except ProviderTokenNotInitError as ex:
- raise ValueError(ex.description)
- filtered_data["updated_by"] = user.id
- filtered_data["updated_at"] = datetime.datetime.now()
- # update Retrieval model
- filtered_data["retrieval_model"] = data["retrieval_model"]
- dataset.query.filter_by(id=dataset_id).update(filtered_data)
- db.session.commit()
- if action:
- deal_dataset_vector_index_task.delay(dataset_id, action)
- return dataset
- @staticmethod
- def delete_dataset(dataset_id, user):
- dataset = DatasetService.get_dataset(dataset_id)
- if dataset is None:
- return False
- DatasetService.check_dataset_permission(dataset, user)
- dataset_was_deleted.send(dataset)
- db.session.delete(dataset)
- db.session.commit()
- return True
- @staticmethod
- def dataset_use_check(dataset_id) -> bool:
- count = AppDatasetJoin.query.filter_by(dataset_id=dataset_id).count()
- if count > 0:
- return True
- return False
- @staticmethod
- def check_dataset_permission(dataset, user):
- if dataset.tenant_id != user.current_tenant_id:
- logging.debug(f"User {user.id} does not have permission to access dataset {dataset.id}")
- raise NoPermissionError("You do not have permission to access this dataset.")
- if user.current_role != TenantAccountRole.OWNER:
- if dataset.permission == DatasetPermissionEnum.ONLY_ME and dataset.created_by != user.id:
- logging.debug(f"User {user.id} does not have permission to access dataset {dataset.id}")
- raise NoPermissionError("You do not have permission to access this dataset.")
- if dataset.permission == "partial_members":
- user_permission = DatasetPermission.query.filter_by(dataset_id=dataset.id, account_id=user.id).first()
- if (
- not user_permission
- and dataset.tenant_id != user.current_tenant_id
- and dataset.created_by != user.id
- ):
- logging.debug(f"User {user.id} does not have permission to access dataset {dataset.id}")
- raise NoPermissionError("You do not have permission to access this dataset.")
- @staticmethod
- def check_dataset_operator_permission(user: Optional[Account] = None, dataset: Optional[Dataset] = None):
- if not dataset:
- raise ValueError("Dataset not found")
- if not user:
- raise ValueError("User not found")
- if user.current_role != TenantAccountRole.OWNER:
- if dataset.permission == DatasetPermissionEnum.ONLY_ME:
- if dataset.created_by != user.id:
- raise NoPermissionError("You do not have permission to access this dataset.")
- elif dataset.permission == DatasetPermissionEnum.PARTIAL_TEAM:
- if not any(
- dp.dataset_id == dataset.id for dp in DatasetPermission.query.filter_by(account_id=user.id).all()
- ):
- raise NoPermissionError("You do not have permission to access this dataset.")
- @staticmethod
- def get_dataset_queries(dataset_id: str, page: int, per_page: int):
- dataset_queries = (
- DatasetQuery.query.filter_by(dataset_id=dataset_id)
- .order_by(db.desc(DatasetQuery.created_at))
- .paginate(page=page, per_page=per_page, max_per_page=100, error_out=False)
- )
- return dataset_queries.items, dataset_queries.total
- @staticmethod
- def get_related_apps(dataset_id: str):
- return (
- AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id)
- .order_by(db.desc(AppDatasetJoin.created_at))
- .all()
- )
- @staticmethod
- def get_dataset_auto_disable_logs(dataset_id: str) -> dict:
- features = FeatureService.get_features(current_user.current_tenant_id)
- if not features.billing.enabled or features.billing.subscription.plan == "sandbox":
- return {
- "document_ids": [],
- "count": 0,
- }
- # get recent 30 days auto disable logs
- start_date = datetime.datetime.now() - datetime.timedelta(days=30)
- dataset_auto_disable_logs = DatasetAutoDisableLog.query.filter(
- DatasetAutoDisableLog.dataset_id == dataset_id,
- DatasetAutoDisableLog.created_at >= start_date,
- ).all()
- if dataset_auto_disable_logs:
- return {
- "document_ids": [log.document_id for log in dataset_auto_disable_logs],
- "count": len(dataset_auto_disable_logs),
- }
- return {
- "document_ids": [],
- "count": 0,
- }
- class DocumentService:
- DEFAULT_RULES: dict[str, Any] = {
- "mode": "custom",
- "rules": {
- "pre_processing_rules": [
- {"id": "remove_extra_spaces", "enabled": True},
- {"id": "remove_urls_emails", "enabled": False},
- ],
- "segmentation": {"delimiter": "\n", "max_tokens": 500, "chunk_overlap": 50},
- },
- "limits": {
- "indexing_max_segmentation_tokens_length": dify_config.INDEXING_MAX_SEGMENTATION_TOKENS_LENGTH,
- },
- }
- DOCUMENT_METADATA_SCHEMA: dict[str, Any] = {
- "book": {
- "title": str,
- "language": str,
- "author": str,
- "publisher": str,
- "publication_date": str,
- "isbn": str,
- "category": str,
- },
- "web_page": {
- "title": str,
- "url": str,
- "language": str,
- "publish_date": str,
- "author/publisher": str,
- "topic/keywords": str,
- "description": str,
- },
- "paper": {
- "title": str,
- "language": str,
- "author": str,
- "publish_date": str,
- "journal/conference_name": str,
- "volume/issue/page_numbers": str,
- "doi": str,
- "topic/keywords": str,
- "abstract": str,
- },
- "social_media_post": {
- "platform": str,
- "author/username": str,
- "publish_date": str,
- "post_url": str,
- "topic/tags": str,
- },
- "wikipedia_entry": {
- "title": str,
- "language": str,
- "web_page_url": str,
- "last_edit_date": str,
- "editor/contributor": str,
- "summary/introduction": str,
- },
- "personal_document": {
- "title": str,
- "author": str,
- "creation_date": str,
- "last_modified_date": str,
- "document_type": str,
- "tags/category": str,
- },
- "business_document": {
- "title": str,
- "author": str,
- "creation_date": str,
- "last_modified_date": str,
- "document_type": str,
- "department/team": str,
- },
- "im_chat_log": {
- "chat_platform": str,
- "chat_participants/group_name": str,
- "start_date": str,
- "end_date": str,
- "summary": str,
- },
- "synced_from_notion": {
- "title": str,
- "language": str,
- "author/creator": str,
- "creation_date": str,
- "last_modified_date": str,
- "notion_page_link": str,
- "category/tags": str,
- "description": str,
- },
- "synced_from_github": {
- "repository_name": str,
- "repository_description": str,
- "repository_owner/organization": str,
- "code_filename": str,
- "code_file_path": str,
- "programming_language": str,
- "github_link": str,
- "open_source_license": str,
- "commit_date": str,
- "commit_author": str,
- },
- "others": dict,
- }
- @staticmethod
- def get_document(dataset_id: str, document_id: Optional[str] = None) -> Optional[Document]:
- if document_id:
- document = (
- db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()
- )
- return document
- else:
- return None
- @staticmethod
- def get_document_by_id(document_id: str) -> Optional[Document]:
- document = db.session.query(Document).filter(Document.id == document_id).first()
- return document
- @staticmethod
- def get_document_by_dataset_id(dataset_id: str) -> list[Document]:
- documents = db.session.query(Document).filter(Document.dataset_id == dataset_id, Document.enabled == True).all()
- return documents
- @staticmethod
- def get_error_documents_by_dataset_id(dataset_id: str) -> list[Document]:
- documents = (
- db.session.query(Document)
- .filter(Document.dataset_id == dataset_id, Document.indexing_status.in_(["error", "paused"]))
- .all()
- )
- return documents
- @staticmethod
- def get_batch_documents(dataset_id: str, batch: str) -> list[Document]:
- documents = (
- db.session.query(Document)
- .filter(
- Document.batch == batch,
- Document.dataset_id == dataset_id,
- Document.tenant_id == current_user.current_tenant_id,
- )
- .all()
- )
- return documents
- @staticmethod
- def get_document_file_detail(file_id: str):
- file_detail = db.session.query(UploadFile).filter(UploadFile.id == file_id).one_or_none()
- return file_detail
- @staticmethod
- def check_archived(document):
- if document.archived:
- return True
- else:
- return False
- @staticmethod
- def delete_document(document):
- # trigger document_was_deleted signal
- file_id = None
- if document.data_source_type == "upload_file":
- if document.data_source_info:
- data_source_info = document.data_source_info_dict
- if data_source_info and "upload_file_id" in data_source_info:
- file_id = data_source_info["upload_file_id"]
- document_was_deleted.send(
- document.id, dataset_id=document.dataset_id, doc_form=document.doc_form, file_id=file_id
- )
- db.session.delete(document)
- db.session.commit()
- @staticmethod
- def delete_documents(dataset: Dataset, document_ids: list[str]):
- documents = db.session.query(Document).filter(Document.id.in_(document_ids)).all()
- file_ids = [
- document.data_source_info_dict["upload_file_id"]
- for document in documents
- if document.data_source_type == "upload_file"
- ]
- batch_clean_document_task.delay(document_ids, dataset.id, dataset.doc_form, file_ids)
- for document in documents:
- db.session.delete(document)
- db.session.commit()
- @staticmethod
- def rename_document(dataset_id: str, document_id: str, name: str) -> Document:
- dataset = DatasetService.get_dataset(dataset_id)
- if not dataset:
- raise ValueError("Dataset not found.")
- document = DocumentService.get_document(dataset_id, document_id)
- if not document:
- raise ValueError("Document not found.")
- if document.tenant_id != current_user.current_tenant_id:
- raise ValueError("No permission.")
- document.name = name
- db.session.add(document)
- db.session.commit()
- return document
- @staticmethod
- def pause_document(document):
- if document.indexing_status not in {"waiting", "parsing", "cleaning", "splitting", "indexing"}:
- raise DocumentIndexingError()
- # update document to be paused
- document.is_paused = True
- document.paused_by = current_user.id
- document.paused_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
- db.session.add(document)
- db.session.commit()
- # set document paused flag
- indexing_cache_key = "document_{}_is_paused".format(document.id)
- redis_client.setnx(indexing_cache_key, "True")
- @staticmethod
- def recover_document(document):
- if not document.is_paused:
- raise DocumentIndexingError()
- # update document to be recover
- document.is_paused = False
- document.paused_by = None
- document.paused_at = None
- db.session.add(document)
- db.session.commit()
- # delete paused flag
- indexing_cache_key = "document_{}_is_paused".format(document.id)
- redis_client.delete(indexing_cache_key)
- # trigger async task
- recover_document_indexing_task.delay(document.dataset_id, document.id)
- @staticmethod
- def retry_document(dataset_id: str, documents: list[Document]):
- for document in documents:
- # add retry flag
- retry_indexing_cache_key = "document_{}_is_retried".format(document.id)
- cache_result = redis_client.get(retry_indexing_cache_key)
- if cache_result is not None:
- raise ValueError("Document is being retried, please try again later")
- # retry document indexing
- document.indexing_status = "waiting"
- db.session.add(document)
- db.session.commit()
- redis_client.setex(retry_indexing_cache_key, 600, 1)
- # trigger async task
- document_ids = [document.id for document in documents]
- retry_document_indexing_task.delay(dataset_id, document_ids)
- @staticmethod
- def sync_website_document(dataset_id: str, document: Document):
- # add sync flag
- sync_indexing_cache_key = "document_{}_is_sync".format(document.id)
- cache_result = redis_client.get(sync_indexing_cache_key)
- if cache_result is not None:
- raise ValueError("Document is being synced, please try again later")
- # sync document indexing
- document.indexing_status = "waiting"
- data_source_info = document.data_source_info_dict
- data_source_info["mode"] = "scrape"
- document.data_source_info = json.dumps(data_source_info, ensure_ascii=False)
- db.session.add(document)
- db.session.commit()
- redis_client.setex(sync_indexing_cache_key, 600, 1)
- sync_website_document_indexing_task.delay(dataset_id, document.id)
- @staticmethod
- def get_documents_position(dataset_id):
- document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first()
- if document:
- return document.position + 1
- else:
- return 1
- @staticmethod
- def save_document_with_dataset_id(
- dataset: Dataset,
- knowledge_config: KnowledgeConfig,
- account: Account | Any,
- dataset_process_rule: Optional[DatasetProcessRule] = None,
- created_from: str = "web",
- ):
- # check document limit
- features = FeatureService.get_features(current_user.current_tenant_id)
- if features.billing.enabled:
- if not knowledge_config.original_document_id:
- count = 0
- if knowledge_config.data_source:
- if knowledge_config.data_source.info_list.data_source_type == "upload_file":
- upload_file_list = knowledge_config.data_source.info_list.file_info_list.file_ids # type: ignore
- count = len(upload_file_list)
- elif knowledge_config.data_source.info_list.data_source_type == "notion_import":
- notion_info_list = knowledge_config.data_source.info_list.notion_info_list
- for notion_info in notion_info_list: # type: ignore
- count = count + len(notion_info.pages)
- elif knowledge_config.data_source.info_list.data_source_type == "website_crawl":
- website_info = knowledge_config.data_source.info_list.website_info_list
- count = len(website_info.urls) # type: ignore
- batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)
- if count > batch_upload_limit:
- raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
- DocumentService.check_documents_upload_quota(count, features)
- # if dataset is empty, update dataset data_source_type
- if not dataset.data_source_type:
- dataset.data_source_type = knowledge_config.data_source.info_list.data_source_type # type: ignore
- if not dataset.indexing_technique:
- if knowledge_config.indexing_technique not in Dataset.INDEXING_TECHNIQUE_LIST:
- raise ValueError("Indexing technique is invalid")
- dataset.indexing_technique = knowledge_config.indexing_technique
- if knowledge_config.indexing_technique == "high_quality":
- model_manager = ModelManager()
- if knowledge_config.embedding_model and knowledge_config.embedding_model_provider:
- dataset_embedding_model = knowledge_config.embedding_model
- dataset_embedding_model_provider = knowledge_config.embedding_model_provider
- else:
- embedding_model = model_manager.get_default_model_instance(
- tenant_id=current_user.current_tenant_id, model_type=ModelType.TEXT_EMBEDDING
- )
- dataset_embedding_model = embedding_model.model
- dataset_embedding_model_provider = embedding_model.provider
- dataset.embedding_model = dataset_embedding_model
- dataset.embedding_model_provider = dataset_embedding_model_provider
- dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
- dataset_embedding_model_provider, dataset_embedding_model
- )
- dataset.collection_binding_id = dataset_collection_binding.id
- if not dataset.retrieval_model:
- default_retrieval_model = {
- "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
- "reranking_enable": False,
- "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
- "top_k": 2,
- "score_threshold_enabled": False,
- }
- dataset.retrieval_model = (
- knowledge_config.retrieval_model.model_dump()
- if knowledge_config.retrieval_model
- else default_retrieval_model
- ) # type: ignore
- documents = []
- if knowledge_config.original_document_id:
- document = DocumentService.update_document_with_dataset_id(dataset, knowledge_config, account)
- documents.append(document)
- batch = document.batch
- else:
- batch = time.strftime("%Y%m%d%H%M%S") + str(random.randint(100000, 999999))
- # save process rule
- if not dataset_process_rule:
- process_rule = knowledge_config.process_rule
- if process_rule:
- if process_rule.mode in ("custom", "hierarchical"):
- dataset_process_rule = DatasetProcessRule(
- dataset_id=dataset.id,
- mode=process_rule.mode,
- rules=process_rule.rules.model_dump_json() if process_rule.rules else None,
- created_by=account.id,
- )
- elif process_rule.mode == "automatic":
- dataset_process_rule = DatasetProcessRule(
- dataset_id=dataset.id,
- mode=process_rule.mode,
- rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
- created_by=account.id,
- )
- else:
- logging.warn(
- f"Invalid process rule mode: {process_rule.mode}, can not find dataset process rule"
- )
- return
- db.session.add(dataset_process_rule)
- db.session.commit()
- lock_name = "add_document_lock_dataset_id_{}".format(dataset.id)
- with redis_client.lock(lock_name, timeout=600):
- position = DocumentService.get_documents_position(dataset.id)
- document_ids = []
- duplicate_document_ids = []
- if knowledge_config.data_source.info_list.data_source_type == "upload_file": # type: ignore
- upload_file_list = knowledge_config.data_source.info_list.file_info_list.file_ids # type: ignore
- for file_id in upload_file_list:
- file = (
- db.session.query(UploadFile)
- .filter(UploadFile.tenant_id == dataset.tenant_id, UploadFile.id == file_id)
- .first()
- )
- # raise error if file not found
- if not file:
- raise FileNotExistsError()
- file_name = file.name
- data_source_info = {
- "upload_file_id": file_id,
- }
- # check duplicate
- if knowledge_config.duplicate:
- document = Document.query.filter_by(
- dataset_id=dataset.id,
- tenant_id=current_user.current_tenant_id,
- data_source_type="upload_file",
- enabled=True,
- name=file_name,
- ).first()
- if document:
- document.dataset_process_rule_id = dataset_process_rule.id # type: ignore
- document.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
- document.created_from = created_from
- document.doc_form = knowledge_config.doc_form
- document.doc_language = knowledge_config.doc_language
- document.data_source_info = json.dumps(data_source_info)
- document.batch = batch
- document.indexing_status = "waiting"
- if knowledge_config.metadata:
- document.doc_type = knowledge_config.metadata.doc_type
- document.metadata = knowledge_config.metadata.doc_metadata
- db.session.add(document)
- documents.append(document)
- duplicate_document_ids.append(document.id)
- continue
- document = DocumentService.build_document(
- dataset,
- dataset_process_rule.id, # type: ignore
- knowledge_config.data_source.info_list.data_source_type, # type: ignore
- knowledge_config.doc_form,
- knowledge_config.doc_language,
- data_source_info,
- created_from,
- position,
- account,
- file_name,
- batch,
- knowledge_config.metadata,
- )
- db.session.add(document)
- db.session.flush()
- document_ids.append(document.id)
- documents.append(document)
- position += 1
- elif knowledge_config.data_source.info_list.data_source_type == "notion_import": # type: ignore
- notion_info_list = knowledge_config.data_source.info_list.notion_info_list # type: ignore
- if not notion_info_list:
- raise ValueError("No notion info list found.")
- exist_page_ids = []
- exist_document = {}
- documents = Document.query.filter_by(
- dataset_id=dataset.id,
- tenant_id=current_user.current_tenant_id,
- data_source_type="notion_import",
- enabled=True,
- ).all()
- if documents:
- for document in documents:
- data_source_info = json.loads(document.data_source_info)
- exist_page_ids.append(data_source_info["notion_page_id"])
- exist_document[data_source_info["notion_page_id"]] = document.id
- for notion_info in notion_info_list:
- workspace_id = notion_info.workspace_id
- data_source_binding = DataSourceOauthBinding.query.filter(
- db.and_(
- DataSourceOauthBinding.tenant_id == current_user.current_tenant_id,
- DataSourceOauthBinding.provider == "notion",
- DataSourceOauthBinding.disabled == False,
- DataSourceOauthBinding.source_info["workspace_id"] == f'"{workspace_id}"',
- )
- ).first()
- if not data_source_binding:
- raise ValueError("Data source binding not found.")
- for page in notion_info.pages:
- if page.page_id not in exist_page_ids:
- data_source_info = {
- "notion_workspace_id": workspace_id,
- "notion_page_id": page.page_id,
- "notion_page_icon": page.page_icon.model_dump() if page.page_icon else None,
- "type": page.type,
- }
- document = DocumentService.build_document(
- dataset,
- dataset_process_rule.id, # type: ignore
- knowledge_config.data_source.info_list.data_source_type, # type: ignore
- knowledge_config.doc_form,
- knowledge_config.doc_language,
- data_source_info,
- created_from,
- position,
- account,
- page.page_name,
- batch,
- knowledge_config.metadata,
- )
- db.session.add(document)
- db.session.flush()
- document_ids.append(document.id)
- documents.append(document)
- position += 1
- else:
- exist_document.pop(page.page_id)
- # delete not selected documents
- if len(exist_document) > 0:
- clean_notion_document_task.delay(list(exist_document.values()), dataset.id)
- elif knowledge_config.data_source.info_list.data_source_type == "website_crawl": # type: ignore
- website_info = knowledge_config.data_source.info_list.website_info_list # type: ignore
- if not website_info:
- raise ValueError("No website info list found.")
- urls = website_info.urls
- for url in urls:
- data_source_info = {
- "url": url,
- "provider": website_info.provider,
- "job_id": website_info.job_id,
- "only_main_content": website_info.only_main_content,
- "mode": "crawl",
- }
- if len(url) > 255:
- document_name = url[:200] + "..."
- else:
- document_name = url
- document = DocumentService.build_document(
- dataset,
- dataset_process_rule.id, # type: ignore
- knowledge_config.data_source.info_list.data_source_type, # type: ignore
- knowledge_config.doc_form,
- knowledge_config.doc_language,
- data_source_info,
- created_from,
- position,
- account,
- document_name,
- batch,
- knowledge_config.metadata,
- )
- db.session.add(document)
- db.session.flush()
- document_ids.append(document.id)
- documents.append(document)
- position += 1
- db.session.commit()
- # trigger async task
- if document_ids:
- document_indexing_task.delay(dataset.id, document_ids)
- if duplicate_document_ids:
- duplicate_document_indexing_task.delay(dataset.id, duplicate_document_ids)
- return documents, batch
- @staticmethod
- def check_documents_upload_quota(count: int, features: FeatureModel):
- can_upload_size = features.documents_upload_quota.limit - features.documents_upload_quota.size
- if count > can_upload_size:
- raise ValueError(
- f"You have reached the limit of your subscription. Only {can_upload_size} documents can be uploaded."
- )
- @staticmethod
- def build_document(
- dataset: Dataset,
- process_rule_id: str,
- data_source_type: str,
- document_form: str,
- document_language: str,
- data_source_info: dict,
- created_from: str,
- position: int,
- account: Account,
- name: str,
- batch: str,
- metadata: Optional[MetaDataConfig] = None,
- ):
- document = Document(
- tenant_id=dataset.tenant_id,
- dataset_id=dataset.id,
- position=position,
- data_source_type=data_source_type,
- data_source_info=json.dumps(data_source_info),
- dataset_process_rule_id=process_rule_id,
- batch=batch,
- name=name,
- created_from=created_from,
- created_by=account.id,
- doc_form=document_form,
- doc_language=document_language,
- )
- if metadata is not None:
- document.doc_metadata = metadata.doc_metadata
- document.doc_type = metadata.doc_type
- return document
- @staticmethod
- def get_tenant_documents_count():
- documents_count = Document.query.filter(
- Document.completed_at.isnot(None),
- Document.enabled == True,
- Document.archived == False,
- Document.tenant_id == current_user.current_tenant_id,
- ).count()
- return documents_count
- @staticmethod
- def update_document_with_dataset_id(
- dataset: Dataset,
- document_data: KnowledgeConfig,
- account: Account,
- dataset_process_rule: Optional[DatasetProcessRule] = None,
- created_from: str = "web",
- ):
- DatasetService.check_dataset_model_setting(dataset)
- document = DocumentService.get_document(dataset.id, document_data.original_document_id)
- if document is None:
- raise NotFound("Document not found")
- if document.display_status != "available":
- raise ValueError("Document is not available")
- # save process rule
- if document_data.process_rule:
- process_rule = document_data.process_rule
- if process_rule.mode in {"custom", "hierarchical"}:
- dataset_process_rule = DatasetProcessRule(
- dataset_id=dataset.id,
- mode=process_rule.mode,
- rules=process_rule.rules.model_dump_json() if process_rule.rules else None,
- created_by=account.id,
- )
- elif process_rule.mode == "automatic":
- dataset_process_rule = DatasetProcessRule(
- dataset_id=dataset.id,
- mode=process_rule.mode,
- rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
- created_by=account.id,
- )
- if dataset_process_rule is not None:
- db.session.add(dataset_process_rule)
- db.session.commit()
- document.dataset_process_rule_id = dataset_process_rule.id
- # update document data source
- if document_data.data_source:
- file_name = ""
- data_source_info = {}
- if document_data.data_source.info_list.data_source_type == "upload_file":
- if not document_data.data_source.info_list.file_info_list:
- raise ValueError("No file info list found.")
- upload_file_list = document_data.data_source.info_list.file_info_list.file_ids
- for file_id in upload_file_list:
- file = (
- db.session.query(UploadFile)
- .filter(UploadFile.tenant_id == dataset.tenant_id, UploadFile.id == file_id)
- .first()
- )
- # raise error if file not found
- if not file:
- raise FileNotExistsError()
- file_name = file.name
- data_source_info = {
- "upload_file_id": file_id,
- }
- elif document_data.data_source.info_list.data_source_type == "notion_import":
- if not document_data.data_source.info_list.notion_info_list:
- raise ValueError("No notion info list found.")
- notion_info_list = document_data.data_source.info_list.notion_info_list
- for notion_info in notion_info_list:
- workspace_id = notion_info.workspace_id
- data_source_binding = DataSourceOauthBinding.query.filter(
- db.and_(
- DataSourceOauthBinding.tenant_id == current_user.current_tenant_id,
- DataSourceOauthBinding.provider == "notion",
- DataSourceOauthBinding.disabled == False,
- DataSourceOauthBinding.source_info["workspace_id"] == f'"{workspace_id}"',
- )
- ).first()
- if not data_source_binding:
- raise ValueError("Data source binding not found.")
- for page in notion_info.pages:
- data_source_info = {
- "notion_workspace_id": workspace_id,
- "notion_page_id": page.page_id,
- "notion_page_icon": page.page_icon.model_dump() if page.page_icon else None, # type: ignore
- "type": page.type,
- }
- elif document_data.data_source.info_list.data_source_type == "website_crawl":
- website_info = document_data.data_source.info_list.website_info_list
- if website_info:
- urls = website_info.urls
- for url in urls:
- data_source_info = {
- "url": url,
- "provider": website_info.provider,
- "job_id": website_info.job_id,
- "only_main_content": website_info.only_main_content, # type: ignore
- "mode": "crawl",
- }
- document.data_source_type = document_data.data_source.info_list.data_source_type
- document.data_source_info = json.dumps(data_source_info)
- document.name = file_name
- # update document name
- if document_data.name:
- document.name = document_data.name
- # update doc_type and doc_metadata if provided
- if document_data.metadata is not None:
- document.doc_metadata = document_data.metadata.doc_type
- document.doc_type = document_data.metadata.doc_type
- # update document to be waiting
- document.indexing_status = "waiting"
- document.completed_at = None
- document.processing_started_at = None
- document.parsing_completed_at = None
- document.cleaning_completed_at = None
- document.splitting_completed_at = None
- document.updated_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
- document.created_from = created_from
- document.doc_form = document_data.doc_form
- db.session.add(document)
- db.session.commit()
- # update document segment
- update_params = {DocumentSegment.status: "re_segment"}
- DocumentSegment.query.filter_by(document_id=document.id).update(update_params)
- db.session.commit()
- # trigger async task
- document_indexing_update_task.delay(document.dataset_id, document.id)
- return document
- @staticmethod
- def save_document_without_dataset_id(tenant_id: str, knowledge_config: KnowledgeConfig, account: Account):
- features = FeatureService.get_features(current_user.current_tenant_id)
- if features.billing.enabled:
- count = 0
- if knowledge_config.data_source.info_list.data_source_type == "upload_file": # type: ignore
- upload_file_list = (
- knowledge_config.data_source.info_list.file_info_list.file_ids # type: ignore
- if knowledge_config.data_source.info_list.file_info_list # type: ignore
- else []
- )
- count = len(upload_file_list)
- elif knowledge_config.data_source.info_list.data_source_type == "notion_import": # type: ignore
- notion_info_list = knowledge_config.data_source.info_list.notion_info_list # type: ignore
- if notion_info_list:
- for notion_info in notion_info_list:
- count = count + len(notion_info.pages)
- elif knowledge_config.data_source.info_list.data_source_type == "website_crawl": # type: ignore
- website_info = knowledge_config.data_source.info_list.website_info_list # type: ignore
- if website_info:
- count = len(website_info.urls)
- batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)
- if count > batch_upload_limit:
- raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
- DocumentService.check_documents_upload_quota(count, features)
- dataset_collection_binding_id = None
- retrieval_model = None
- if knowledge_config.indexing_technique == "high_quality":
- dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
- knowledge_config.embedding_model_provider, # type: ignore
- knowledge_config.embedding_model, # type: ignore
- )
- dataset_collection_binding_id = dataset_collection_binding.id
- if knowledge_config.retrieval_model:
- retrieval_model = knowledge_config.retrieval_model
- else:
- retrieval_model = RetrievalModel(
- search_method=RetrievalMethod.SEMANTIC_SEARCH.value,
- reranking_enable=False,
- reranking_model=RerankingModel(reranking_provider_name="", reranking_model_name=""),
- top_k=2,
- score_threshold_enabled=False,
- )
- # save dataset
- dataset = Dataset(
- tenant_id=tenant_id,
- name="",
- data_source_type=knowledge_config.data_source.info_list.data_source_type, # type: ignore
- indexing_technique=knowledge_config.indexing_technique,
- created_by=account.id,
- embedding_model=knowledge_config.embedding_model,
- embedding_model_provider=knowledge_config.embedding_model_provider,
- collection_binding_id=dataset_collection_binding_id,
- retrieval_model=retrieval_model.model_dump() if retrieval_model else None,
- )
- db.session.add(dataset) # type: ignore
- db.session.flush()
- documents, batch = DocumentService.save_document_with_dataset_id(dataset, knowledge_config, account)
- cut_length = 18
- cut_name = documents[0].name[:cut_length]
- dataset.name = cut_name + "..."
- dataset.description = "useful for when you want to answer queries about the " + documents[0].name
- db.session.commit()
- return dataset, documents, batch
- @classmethod
- def document_create_args_validate(cls, knowledge_config: KnowledgeConfig):
- if not knowledge_config.data_source and not knowledge_config.process_rule:
- raise ValueError("Data source or Process rule is required")
- else:
- if knowledge_config.data_source:
- DocumentService.data_source_args_validate(knowledge_config)
- if knowledge_config.process_rule:
- DocumentService.process_rule_args_validate(knowledge_config)
- @classmethod
- def data_source_args_validate(cls, knowledge_config: KnowledgeConfig):
- if not knowledge_config.data_source:
- raise ValueError("Data source is required")
- if knowledge_config.data_source.info_list.data_source_type not in Document.DATA_SOURCES:
- raise ValueError("Data source type is invalid")
- if not knowledge_config.data_source.info_list:
- raise ValueError("Data source info is required")
- if knowledge_config.data_source.info_list.data_source_type == "upload_file":
- if not knowledge_config.data_source.info_list.file_info_list:
- raise ValueError("File source info is required")
- if knowledge_config.data_source.info_list.data_source_type == "notion_import":
- if not knowledge_config.data_source.info_list.notion_info_list:
- raise ValueError("Notion source info is required")
- if knowledge_config.data_source.info_list.data_source_type == "website_crawl":
- if not knowledge_config.data_source.info_list.website_info_list:
- raise ValueError("Website source info is required")
- @classmethod
- def process_rule_args_validate(cls, knowledge_config: KnowledgeConfig):
- if not knowledge_config.process_rule:
- raise ValueError("Process rule is required")
- if not knowledge_config.process_rule.mode:
- raise ValueError("Process rule mode is required")
- if knowledge_config.process_rule.mode not in DatasetProcessRule.MODES:
- raise ValueError("Process rule mode is invalid")
- if knowledge_config.process_rule.mode == "automatic":
- knowledge_config.process_rule.rules = None
- else:
- if not knowledge_config.process_rule.rules:
- raise ValueError("Process rule rules is required")
- if knowledge_config.process_rule.rules.pre_processing_rules is None:
- raise ValueError("Process rule pre_processing_rules is required")
- unique_pre_processing_rule_dicts = {}
- for pre_processing_rule in knowledge_config.process_rule.rules.pre_processing_rules:
- if not pre_processing_rule.id:
- raise ValueError("Process rule pre_processing_rules id is required")
- if not isinstance(pre_processing_rule.enabled, bool):
- raise ValueError("Process rule pre_processing_rules enabled is invalid")
- unique_pre_processing_rule_dicts[pre_processing_rule.id] = pre_processing_rule
- knowledge_config.process_rule.rules.pre_processing_rules = list(unique_pre_processing_rule_dicts.values())
- if not knowledge_config.process_rule.rules.segmentation:
- raise ValueError("Process rule segmentation is required")
- if not knowledge_config.process_rule.rules.segmentation.separator:
- raise ValueError("Process rule segmentation separator is required")
- if not isinstance(knowledge_config.process_rule.rules.segmentation.separator, str):
- raise ValueError("Process rule segmentation separator is invalid")
- if not (
- knowledge_config.process_rule.mode == "hierarchical"
- and knowledge_config.process_rule.rules.parent_mode == "full-doc"
- ):
- if not knowledge_config.process_rule.rules.segmentation.max_tokens:
- raise ValueError("Process rule segmentation max_tokens is required")
- if not isinstance(knowledge_config.process_rule.rules.segmentation.max_tokens, int):
- raise ValueError("Process rule segmentation max_tokens is invalid")
- @classmethod
- def estimate_args_validate(cls, args: dict):
- if "info_list" not in args or not args["info_list"]:
- raise ValueError("Data source info is required")
- if not isinstance(args["info_list"], dict):
- raise ValueError("Data info is invalid")
- if "process_rule" not in args or not args["process_rule"]:
- raise ValueError("Process rule is required")
- if not isinstance(args["process_rule"], dict):
- raise ValueError("Process rule is invalid")
- if "mode" not in args["process_rule"] or not args["process_rule"]["mode"]:
- raise ValueError("Process rule mode is required")
- if args["process_rule"]["mode"] not in DatasetProcessRule.MODES:
- raise ValueError("Process rule mode is invalid")
- if args["process_rule"]["mode"] == "automatic":
- args["process_rule"]["rules"] = {}
- else:
- if "rules" not in args["process_rule"] or not args["process_rule"]["rules"]:
- raise ValueError("Process rule rules is required")
- if not isinstance(args["process_rule"]["rules"], dict):
- raise ValueError("Process rule rules is invalid")
- if (
- "pre_processing_rules" not in args["process_rule"]["rules"]
- or args["process_rule"]["rules"]["pre_processing_rules"] is None
- ):
- raise ValueError("Process rule pre_processing_rules is required")
- if not isinstance(args["process_rule"]["rules"]["pre_processing_rules"], list):
- raise ValueError("Process rule pre_processing_rules is invalid")
- unique_pre_processing_rule_dicts = {}
- for pre_processing_rule in args["process_rule"]["rules"]["pre_processing_rules"]:
- if "id" not in pre_processing_rule or not pre_processing_rule["id"]:
- raise ValueError("Process rule pre_processing_rules id is required")
- if pre_processing_rule["id"] not in DatasetProcessRule.PRE_PROCESSING_RULES:
- raise ValueError("Process rule pre_processing_rules id is invalid")
- if "enabled" not in pre_processing_rule or pre_processing_rule["enabled"] is None:
- raise ValueError("Process rule pre_processing_rules enabled is required")
- if not isinstance(pre_processing_rule["enabled"], bool):
- raise ValueError("Process rule pre_processing_rules enabled is invalid")
- unique_pre_processing_rule_dicts[pre_processing_rule["id"]] = pre_processing_rule
- args["process_rule"]["rules"]["pre_processing_rules"] = list(unique_pre_processing_rule_dicts.values())
- if (
- "segmentation" not in args["process_rule"]["rules"]
- or args["process_rule"]["rules"]["segmentation"] is None
- ):
- raise ValueError("Process rule segmentation is required")
- if not isinstance(args["process_rule"]["rules"]["segmentation"], dict):
- raise ValueError("Process rule segmentation is invalid")
- if (
- "separator" not in args["process_rule"]["rules"]["segmentation"]
- or not args["process_rule"]["rules"]["segmentation"]["separator"]
- ):
- raise ValueError("Process rule segmentation separator is required")
- if not isinstance(args["process_rule"]["rules"]["segmentation"]["separator"], str):
- raise ValueError("Process rule segmentation separator is invalid")
- if (
- "max_tokens" not in args["process_rule"]["rules"]["segmentation"]
- or not args["process_rule"]["rules"]["segmentation"]["max_tokens"]
- ):
- raise ValueError("Process rule segmentation max_tokens is required")
- if not isinstance(args["process_rule"]["rules"]["segmentation"]["max_tokens"], int):
- raise ValueError("Process rule segmentation max_tokens is invalid")
- class SegmentService:
- @classmethod
- def segment_create_args_validate(cls, args: dict, document: Document):
- if document.doc_form == "qa_model":
- if "answer" not in args or not args["answer"]:
- raise ValueError("Answer is required")
- if not args["answer"].strip():
- raise ValueError("Answer is empty")
- if "content" not in args or not args["content"] or not args["content"].strip():
- raise ValueError("Content is empty")
- @classmethod
- def create_segment(cls, args: dict, document: Document, dataset: Dataset):
- content = args["content"]
- doc_id = str(uuid.uuid4())
- segment_hash = helper.generate_text_hash(content)
- tokens = 0
- if dataset.indexing_technique == "high_quality":
- model_manager = ModelManager()
- embedding_model = model_manager.get_model_instance(
- tenant_id=current_user.current_tenant_id,
- provider=dataset.embedding_model_provider,
- model_type=ModelType.TEXT_EMBEDDING,
- model=dataset.embedding_model,
- )
- # calc embedding use tokens
- tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])
- lock_name = "add_segment_lock_document_id_{}".format(document.id)
- with redis_client.lock(lock_name, timeout=600):
- max_position = (
- db.session.query(func.max(DocumentSegment.position))
- .filter(DocumentSegment.document_id == document.id)
- .scalar()
- )
- segment_document = DocumentSegment(
- tenant_id=current_user.current_tenant_id,
- dataset_id=document.dataset_id,
- document_id=document.id,
- index_node_id=doc_id,
- index_node_hash=segment_hash,
- position=max_position + 1 if max_position else 1,
- content=content,
- word_count=len(content),
- tokens=tokens,
- status="completed",
- indexing_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
- completed_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
- created_by=current_user.id,
- )
- if document.doc_form == "qa_model":
- segment_document.word_count += len(args["answer"])
- segment_document.answer = args["answer"]
- db.session.add(segment_document)
- # update document word count
- document.word_count += segment_document.word_count
- db.session.add(document)
- db.session.commit()
- # save vector index
- try:
- VectorService.create_segments_vector([args["keywords"]], [segment_document], dataset, document.doc_form)
- except Exception as e:
- logging.exception("create segment index failed")
- segment_document.enabled = False
- segment_document.disabled_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
- segment_document.status = "error"
- segment_document.error = str(e)
- db.session.commit()
- segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_document.id).first()
- return segment
- @classmethod
- def multi_create_segment(cls, segments: list, document: Document, dataset: Dataset):
- lock_name = "multi_add_segment_lock_document_id_{}".format(document.id)
- increment_word_count = 0
- with redis_client.lock(lock_name, timeout=600):
- embedding_model = None
- if dataset.indexing_technique == "high_quality":
- model_manager = ModelManager()
- embedding_model = model_manager.get_model_instance(
- tenant_id=current_user.current_tenant_id,
- provider=dataset.embedding_model_provider,
- model_type=ModelType.TEXT_EMBEDDING,
- model=dataset.embedding_model,
- )
- max_position = (
- db.session.query(func.max(DocumentSegment.position))
- .filter(DocumentSegment.document_id == document.id)
- .scalar()
- )
- pre_segment_data_list = []
- segment_data_list = []
- keywords_list = []
- position = max_position + 1 if max_position else 1
- for segment_item in segments:
- content = segment_item["content"]
- doc_id = str(uuid.uuid4())
- segment_hash = helper.generate_text_hash(content)
- tokens = 0
- if dataset.indexing_technique == "high_quality" and embedding_model:
- # calc embedding use tokens
- if document.doc_form == "qa_model":
- tokens = embedding_model.get_text_embedding_num_tokens(texts=[content + segment_item["answer"]])
- else:
- tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])
- segment_document = DocumentSegment(
- tenant_id=current_user.current_tenant_id,
- dataset_id=document.dataset_id,
- document_id=document.id,
- index_node_id=doc_id,
- index_node_hash=segment_hash,
- position=position,
- content=content,
- word_count=len(content),
- tokens=tokens,
- status="completed",
- indexing_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
- completed_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
- created_by=current_user.id,
- )
- if document.doc_form == "qa_model":
- segment_document.answer = segment_item["answer"]
- segment_document.word_count += len(segment_item["answer"])
- increment_word_count += segment_document.word_count
- db.session.add(segment_document)
- segment_data_list.append(segment_document)
- position += 1
- pre_segment_data_list.append(segment_document)
- if "keywords" in segment_item:
- keywords_list.append(segment_item["keywords"])
- else:
- keywords_list.append(None)
- # update document word count
- document.word_count += increment_word_count
- db.session.add(document)
- try:
- # save vector index
- VectorService.create_segments_vector(keywords_list, pre_segment_data_list, dataset, document.doc_form)
- except Exception as e:
- logging.exception("create segment index failed")
- for segment_document in segment_data_list:
- segment_document.enabled = False
- segment_document.disabled_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
- segment_document.status = "error"
- segment_document.error = str(e)
- db.session.commit()
- return segment_data_list
- @classmethod
- def update_segment(cls, args: SegmentUpdateArgs, segment: DocumentSegment, document: Document, dataset: Dataset):
- indexing_cache_key = "segment_{}_indexing".format(segment.id)
- cache_result = redis_client.get(indexing_cache_key)
- if cache_result is not None:
- raise ValueError("Segment is indexing, please try again later")
- if args.enabled is not None:
- action = args.enabled
- if segment.enabled != action:
- if not action:
- segment.enabled = action
- segment.disabled_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
- segment.disabled_by = current_user.id
- db.session.add(segment)
- db.session.commit()
- # Set cache to prevent indexing the same segment multiple times
- redis_client.setex(indexing_cache_key, 600, 1)
- disable_segment_from_index_task.delay(segment.id)
- return segment
- if not segment.enabled:
- if args.enabled is not None:
- if not args.enabled:
- raise ValueError("Can't update disabled segment")
- else:
- raise ValueError("Can't update disabled segment")
- try:
- word_count_change = segment.word_count
- content = args.content or segment.content
- if segment.content == content:
- segment.word_count = len(content)
- if document.doc_form == "qa_model":
- segment.answer = args.answer
- segment.word_count += len(args.answer) if args.answer else 0
- word_count_change = segment.word_count - word_count_change
- keyword_changed = False
- if args.keywords:
- if Counter(segment.keywords) != Counter(args.keywords):
- segment.keywords = args.keywords
- keyword_changed = True
- segment.enabled = True
- segment.disabled_at = None
- segment.disabled_by = None
- db.session.add(segment)
- db.session.commit()
- # update document word count
- if word_count_change != 0:
- document.word_count = max(0, document.word_count + word_count_change)
- db.session.add(document)
- # update segment index task
- if document.doc_form == IndexType.PARENT_CHILD_INDEX and args.regenerate_child_chunks:
- # regenerate child chunks
- # get embedding model instance
- if dataset.indexing_technique == "high_quality":
- # check embedding model setting
- model_manager = ModelManager()
- if dataset.embedding_model_provider:
- embedding_model_instance = model_manager.get_model_instance(
- tenant_id=dataset.tenant_id,
- provider=dataset.embedding_model_provider,
- model_type=ModelType.TEXT_EMBEDDING,
- model=dataset.embedding_model,
- )
- else:
- embedding_model_instance = model_manager.get_default_model_instance(
- tenant_id=dataset.tenant_id,
- model_type=ModelType.TEXT_EMBEDDING,
- )
- else:
- raise ValueError("The knowledge base index technique is not high quality!")
- # get the process rule
- processing_rule = (
- db.session.query(DatasetProcessRule)
- .filter(DatasetProcessRule.id == document.dataset_process_rule_id)
- .first()
- )
- if not processing_rule:
- raise ValueError("No processing rule found.")
- VectorService.generate_child_chunks(
- segment, document, dataset, embedding_model_instance, processing_rule, True
- )
- elif document.doc_form in (IndexType.PARAGRAPH_INDEX, IndexType.QA_INDEX):
- if args.enabled or keyword_changed:
- VectorService.create_segments_vector(
- [args.keywords] if args.keywords else None,
- [segment],
- dataset,
- document.doc_form,
- )
- else:
- segment_hash = helper.generate_text_hash(content)
- tokens = 0
- if dataset.indexing_technique == "high_quality":
- model_manager = ModelManager()
- embedding_model = model_manager.get_model_instance(
- tenant_id=current_user.current_tenant_id,
- provider=dataset.embedding_model_provider,
- model_type=ModelType.TEXT_EMBEDDING,
- model=dataset.embedding_model,
- )
- # calc embedding use tokens
- if document.doc_form == "qa_model":
- tokens = embedding_model.get_text_embedding_num_tokens(texts=[content + segment.answer])
- else:
- tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])
- segment.content = content
- segment.index_node_hash = segment_hash
- segment.word_count = len(content)
- segment.tokens = tokens
- segment.status = "completed"
- segment.indexing_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
- segment.completed_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
- segment.updated_by = current_user.id
- segment.updated_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
- segment.enabled = True
- segment.disabled_at = None
- segment.disabled_by = None
- if document.doc_form == "qa_model":
- segment.answer = args.answer
- segment.word_count += len(args.answer) if args.answer else 0
- word_count_change = segment.word_count - word_count_change
- # update document word count
- if word_count_change != 0:
- document.word_count = max(0, document.word_count + word_count_change)
- db.session.add(document)
- db.session.add(segment)
- db.session.commit()
- if document.doc_form == IndexType.PARENT_CHILD_INDEX and args.regenerate_child_chunks:
- # get embedding model instance
- if dataset.indexing_technique == "high_quality":
- # check embedding model setting
- model_manager = ModelManager()
- if dataset.embedding_model_provider:
- embedding_model_instance = model_manager.get_model_instance(
- tenant_id=dataset.tenant_id,
- provider=dataset.embedding_model_provider,
- model_type=ModelType.TEXT_EMBEDDING,
- model=dataset.embedding_model,
- )
- else:
- embedding_model_instance = model_manager.get_default_model_instance(
- tenant_id=dataset.tenant_id,
- model_type=ModelType.TEXT_EMBEDDING,
- )
- else:
- raise ValueError("The knowledge base index technique is not high quality!")
- # get the process rule
- processing_rule = (
- db.session.query(DatasetProcessRule)
- .filter(DatasetProcessRule.id == document.dataset_process_rule_id)
- .first()
- )
- if not processing_rule:
- raise ValueError("No processing rule found.")
- VectorService.generate_child_chunks(
- segment, document, dataset, embedding_model_instance, processing_rule, True
- )
- elif document.doc_form in (IndexType.PARAGRAPH_INDEX, IndexType.QA_INDEX):
- # update segment vector index
- VectorService.update_segment_vector(args.keywords, segment, dataset)
- except Exception as e:
- logging.exception("update segment index failed")
- segment.enabled = False
- segment.disabled_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
- segment.status = "error"
- segment.error = str(e)
- db.session.commit()
- new_segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment.id).first()
- return new_segment
- @classmethod
- def delete_segment(cls, segment: DocumentSegment, document: Document, dataset: Dataset):
- indexing_cache_key = "segment_{}_delete_indexing".format(segment.id)
- cache_result = redis_client.get(indexing_cache_key)
- if cache_result is not None:
- raise ValueError("Segment is deleting.")
- # enabled segment need to delete index
- if segment.enabled:
- # send delete segment index task
- redis_client.setex(indexing_cache_key, 600, 1)
- delete_segment_from_index_task.delay([segment.index_node_id], dataset.id, document.id)
- db.session.delete(segment)
- # update document word count
- document.word_count -= segment.word_count
- db.session.add(document)
- db.session.commit()
- @classmethod
- def delete_segments(cls, segment_ids: list, document: Document, dataset: Dataset):
- index_node_ids = (
- DocumentSegment.query.with_entities(DocumentSegment.index_node_id)
- .filter(
- DocumentSegment.id.in_(segment_ids),
- DocumentSegment.dataset_id == dataset.id,
- DocumentSegment.document_id == document.id,
- DocumentSegment.tenant_id == current_user.current_tenant_id,
- )
- .all()
- )
- index_node_ids = [index_node_id[0] for index_node_id in index_node_ids]
- delete_segment_from_index_task.delay(index_node_ids, dataset.id, document.id)
- db.session.query(DocumentSegment).filter(DocumentSegment.id.in_(segment_ids)).delete()
- db.session.commit()
- @classmethod
- def update_segments_status(cls, segment_ids: list, action: str, dataset: Dataset, document: Document):
- if action == "enable":
- segments = (
- db.session.query(DocumentSegment)
- .filter(
- DocumentSegment.id.in_(segment_ids),
- DocumentSegment.dataset_id == dataset.id,
- DocumentSegment.document_id == document.id,
- DocumentSegment.enabled == False,
- )
- .all()
- )
- if not segments:
- return
- real_deal_segmment_ids = []
- for segment in segments:
- indexing_cache_key = "segment_{}_indexing".format(segment.id)
- cache_result = redis_client.get(indexing_cache_key)
- if cache_result is not None:
- continue
- segment.enabled = True
- segment.disabled_at = None
- segment.disabled_by = None
- db.session.add(segment)
- real_deal_segmment_ids.append(segment.id)
- db.session.commit()
- enable_segments_to_index_task.delay(real_deal_segmment_ids, dataset.id, document.id)
- elif action == "disable":
- segments = (
- db.session.query(DocumentSegment)
- .filter(
- DocumentSegment.id.in_(segment_ids),
- DocumentSegment.dataset_id == dataset.id,
- DocumentSegment.document_id == document.id,
- DocumentSegment.enabled == True,
- )
- .all()
- )
- if not segments:
- return
- real_deal_segmment_ids = []
- for segment in segments:
- indexing_cache_key = "segment_{}_indexing".format(segment.id)
- cache_result = redis_client.get(indexing_cache_key)
- if cache_result is not None:
- continue
- segment.enabled = False
- segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
- segment.disabled_by = current_user.id
- db.session.add(segment)
- real_deal_segmment_ids.append(segment.id)
- db.session.commit()
- disable_segments_from_index_task.delay(real_deal_segmment_ids, dataset.id, document.id)
- else:
- raise InvalidActionError()
- @classmethod
- def create_child_chunk(
- cls, content: str, segment: DocumentSegment, document: Document, dataset: Dataset
- ) -> ChildChunk:
- lock_name = "add_child_lock_{}".format(segment.id)
- with redis_client.lock(lock_name, timeout=20):
- index_node_id = str(uuid.uuid4())
- index_node_hash = helper.generate_text_hash(content)
- child_chunk_count = (
- db.session.query(ChildChunk)
- .filter(
- ChildChunk.tenant_id == current_user.current_tenant_id,
- ChildChunk.dataset_id == dataset.id,
- ChildChunk.document_id == document.id,
- ChildChunk.segment_id == segment.id,
- )
- .count()
- )
- max_position = (
- db.session.query(func.max(ChildChunk.position))
- .filter(
- ChildChunk.tenant_id == current_user.current_tenant_id,
- ChildChunk.dataset_id == dataset.id,
- ChildChunk.document_id == document.id,
- ChildChunk.segment_id == segment.id,
- )
- .scalar()
- )
- child_chunk = ChildChunk(
- tenant_id=current_user.current_tenant_id,
- dataset_id=dataset.id,
- document_id=document.id,
- segment_id=segment.id,
- position=max_position + 1,
- index_node_id=index_node_id,
- index_node_hash=index_node_hash,
- content=content,
- word_count=len(content),
- type="customized",
- created_by=current_user.id,
- )
- db.session.add(child_chunk)
- # save vector index
- try:
- VectorService.create_child_chunk_vector(child_chunk, dataset)
- except Exception as e:
- logging.exception("create child chunk index failed")
- db.session.rollback()
- raise ChildChunkIndexingError(str(e))
- db.session.commit()
- return child_chunk
- @classmethod
- def update_child_chunks(
- cls,
- child_chunks_update_args: list[ChildChunkUpdateArgs],
- segment: DocumentSegment,
- document: Document,
- dataset: Dataset,
- ) -> list[ChildChunk]:
- child_chunks = (
- db.session.query(ChildChunk)
- .filter(
- ChildChunk.dataset_id == dataset.id,
- ChildChunk.document_id == document.id,
- ChildChunk.segment_id == segment.id,
- )
- .all()
- )
- child_chunks_map = {chunk.id: chunk for chunk in child_chunks}
- new_child_chunks, update_child_chunks, delete_child_chunks, new_child_chunks_args = [], [], [], []
- for child_chunk_update_args in child_chunks_update_args:
- if child_chunk_update_args.id:
- child_chunk = child_chunks_map.pop(child_chunk_update_args.id, None)
- if child_chunk:
- if child_chunk.content != child_chunk_update_args.content:
- child_chunk.content = child_chunk_update_args.content
- child_chunk.word_count = len(child_chunk.content)
- child_chunk.updated_by = current_user.id
- child_chunk.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
- child_chunk.type = "customized"
- update_child_chunks.append(child_chunk)
- else:
- new_child_chunks_args.append(child_chunk_update_args)
- if child_chunks_map:
- delete_child_chunks = list(child_chunks_map.values())
- try:
- if update_child_chunks:
- db.session.bulk_save_objects(update_child_chunks)
- if delete_child_chunks:
- for child_chunk in delete_child_chunks:
- db.session.delete(child_chunk)
- if new_child_chunks_args:
- child_chunk_count = len(child_chunks)
- for position, args in enumerate(new_child_chunks_args, start=child_chunk_count + 1):
- index_node_id = str(uuid.uuid4())
- index_node_hash = helper.generate_text_hash(args.content)
- child_chunk = ChildChunk(
- tenant_id=current_user.current_tenant_id,
- dataset_id=dataset.id,
- document_id=document.id,
- segment_id=segment.id,
- position=position,
- index_node_id=index_node_id,
- index_node_hash=index_node_hash,
- content=args.content,
- word_count=len(args.content),
- type="customized",
- created_by=current_user.id,
- )
- db.session.add(child_chunk)
- db.session.flush()
- new_child_chunks.append(child_chunk)
- VectorService.update_child_chunk_vector(new_child_chunks, update_child_chunks, delete_child_chunks, dataset)
- db.session.commit()
- except Exception as e:
- logging.exception("update child chunk index failed")
- db.session.rollback()
- raise ChildChunkIndexingError(str(e))
- return sorted(new_child_chunks + update_child_chunks, key=lambda x: x.position)
- @classmethod
- def update_child_chunk(
- cls,
- content: str,
- child_chunk: ChildChunk,
- segment: DocumentSegment,
- document: Document,
- dataset: Dataset,
- ) -> ChildChunk:
- try:
- child_chunk.content = content
- child_chunk.word_count = len(content)
- child_chunk.updated_by = current_user.id
- child_chunk.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
- child_chunk.type = "customized"
- db.session.add(child_chunk)
- VectorService.update_child_chunk_vector([], [child_chunk], [], dataset)
- db.session.commit()
- except Exception as e:
- logging.exception("update child chunk index failed")
- db.session.rollback()
- raise ChildChunkIndexingError(str(e))
- return child_chunk
- @classmethod
- def delete_child_chunk(cls, child_chunk: ChildChunk, dataset: Dataset):
- db.session.delete(child_chunk)
- try:
- VectorService.delete_child_chunk_vector(child_chunk, dataset)
- except Exception as e:
- logging.exception("delete child chunk index failed")
- db.session.rollback()
- raise ChildChunkDeleteIndexError(str(e))
- db.session.commit()
- @classmethod
- def get_child_chunks(
- cls, segment_id: str, document_id: str, dataset_id: str, page: int, limit: int, keyword: Optional[str] = None
- ):
- query = ChildChunk.query.filter_by(
- tenant_id=current_user.current_tenant_id,
- dataset_id=dataset_id,
- document_id=document_id,
- segment_id=segment_id,
- ).order_by(ChildChunk.position.asc())
- if keyword:
- query = query.where(ChildChunk.content.ilike(f"%{keyword}%"))
- return query.paginate(page=page, per_page=limit, max_per_page=100, error_out=False)
- class DatasetCollectionBindingService:
- @classmethod
- def get_dataset_collection_binding(
- cls, provider_name: str, model_name: str, collection_type: str = "dataset"
- ) -> DatasetCollectionBinding:
- dataset_collection_binding = (
- db.session.query(DatasetCollectionBinding)
- .filter(
- DatasetCollectionBinding.provider_name == provider_name,
- DatasetCollectionBinding.model_name == model_name,
- DatasetCollectionBinding.type == collection_type,
- )
- .order_by(DatasetCollectionBinding.created_at)
- .first()
- )
- if not dataset_collection_binding:
- dataset_collection_binding = DatasetCollectionBinding(
- provider_name=provider_name,
- model_name=model_name,
- collection_name=Dataset.gen_collection_name_by_id(str(uuid.uuid4())),
- type=collection_type,
- )
- db.session.add(dataset_collection_binding)
- db.session.commit()
- return dataset_collection_binding
- @classmethod
- def get_dataset_collection_binding_by_id_and_type(
- cls, collection_binding_id: str, collection_type: str = "dataset"
- ) -> DatasetCollectionBinding:
- dataset_collection_binding = (
- db.session.query(DatasetCollectionBinding)
- .filter(
- DatasetCollectionBinding.id == collection_binding_id, DatasetCollectionBinding.type == collection_type
- )
- .order_by(DatasetCollectionBinding.created_at)
- .first()
- )
- if not dataset_collection_binding:
- raise ValueError("Dataset collection binding not found")
- return dataset_collection_binding
- class DatasetPermissionService:
- @classmethod
- def get_dataset_partial_member_list(cls, dataset_id):
- user_list_query = (
- db.session.query(
- DatasetPermission.account_id,
- )
- .filter(DatasetPermission.dataset_id == dataset_id)
- .all()
- )
- user_list = []
- for user in user_list_query:
- user_list.append(user.account_id)
- return user_list
- @classmethod
- def update_partial_member_list(cls, tenant_id, dataset_id, user_list):
- try:
- db.session.query(DatasetPermission).filter(DatasetPermission.dataset_id == dataset_id).delete()
- permissions = []
- for user in user_list:
- permission = DatasetPermission(
- tenant_id=tenant_id,
- dataset_id=dataset_id,
- account_id=user["user_id"],
- )
- permissions.append(permission)
- db.session.add_all(permissions)
- db.session.commit()
- except Exception as e:
- db.session.rollback()
- raise e
- @classmethod
- def check_permission(cls, user, dataset, requested_permission, requested_partial_member_list):
- if not user.is_dataset_editor:
- raise NoPermissionError("User does not have permission to edit this dataset.")
- if user.is_dataset_operator and dataset.permission != requested_permission:
- raise NoPermissionError("Dataset operators cannot change the dataset permissions.")
- if user.is_dataset_operator and requested_permission == "partial_members":
- if not requested_partial_member_list:
- raise ValueError("Partial member list is required when setting to partial members.")
- local_member_list = cls.get_dataset_partial_member_list(dataset.id)
- request_member_list = [user["user_id"] for user in requested_partial_member_list]
- if set(local_member_list) != set(request_member_list):
- raise ValueError("Dataset operators cannot change the dataset permissions.")
- @classmethod
- def clear_partial_member_list(cls, dataset_id):
- try:
- db.session.query(DatasetPermission).filter(DatasetPermission.dataset_id == dataset_id).delete()
- db.session.commit()
- except Exception as e:
- db.session.rollback()
- raise e
|