import json import logging from typing import Union, Generator, Dict, Any, Tuple, List from core.model_runtime.entities.message_entities import PromptMessage, UserPromptMessage,\ SystemPromptMessage, AssistantPromptMessage, ToolPromptMessage, PromptMessageTool from core.model_runtime.entities.llm_entities import LLMResultChunk, LLMResult, LLMUsage from core.model_manager import ModelInstance from core.application_queue_manager import PublishFrom from core.tools.errors import ToolInvokeError, ToolNotFoundError, \ ToolNotSupportedError, ToolProviderNotFoundError, ToolParamterValidationError, \ ToolProviderCredentialValidationError from core.features.assistant_base_runner import BaseAssistantApplicationRunner from models.model import Conversation, Message, MessageAgentThought logger = logging.getLogger(__name__) class AssistantFunctionCallApplicationRunner(BaseAssistantApplicationRunner): def run(self, model_instance: ModelInstance, conversation: Conversation, message: Message, query: str, ) -> Generator[LLMResultChunk, None, None]: """ Run FunctionCall agent application """ app_orchestration_config = self.app_orchestration_config prompt_template = self.app_orchestration_config.prompt_template.simple_prompt_template or '' prompt_messages = self.history_prompt_messages prompt_messages = self.organize_prompt_messages( prompt_template=prompt_template, query=query, prompt_messages=prompt_messages ) # convert tools into ModelRuntime Tool format prompt_messages_tools: List[PromptMessageTool] = [] tool_instances = {} for tool in self.app_orchestration_config.agent.tools if self.app_orchestration_config.agent else []: try: prompt_tool, tool_entity = self._convert_tool_to_prompt_message_tool(tool) except Exception: # api tool may be deleted continue # save tool entity tool_instances[tool.tool_name] = tool_entity # save prompt tool prompt_messages_tools.append(prompt_tool) # convert dataset tools into ModelRuntime Tool format for dataset_tool in self.dataset_tools: prompt_tool = self._convert_dataset_retriever_tool_to_prompt_message_tool(dataset_tool) # save prompt tool prompt_messages_tools.append(prompt_tool) # save tool entity tool_instances[dataset_tool.identity.name] = dataset_tool iteration_step = 1 max_iteration_steps = min(app_orchestration_config.agent.max_iteration, 5) + 1 # continue to run until there is not any tool call function_call_state = True agent_thoughts: List[MessageAgentThought] = [] llm_usage = { 'usage': None } final_answer = '' def increase_usage(final_llm_usage_dict: Dict[str, LLMUsage], usage: LLMUsage): if not final_llm_usage_dict['usage']: final_llm_usage_dict['usage'] = usage else: llm_usage = final_llm_usage_dict['usage'] llm_usage.prompt_tokens += usage.prompt_tokens llm_usage.completion_tokens += usage.completion_tokens llm_usage.prompt_price += usage.prompt_price llm_usage.completion_price += usage.completion_price while function_call_state and iteration_step <= max_iteration_steps: function_call_state = False if iteration_step == max_iteration_steps: # the last iteration, remove all tools prompt_messages_tools = [] message_file_ids = [] agent_thought = self.create_agent_thought( message_id=message.id, message='', tool_name='', tool_input='', messages_ids=message_file_ids ) self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER) # recale llm max tokens self.recale_llm_max_tokens(self.model_config, prompt_messages) # invoke model chunks: Generator[LLMResultChunk, None, None] = model_instance.invoke_llm( prompt_messages=prompt_messages, model_parameters=app_orchestration_config.model_config.parameters, tools=prompt_messages_tools, stop=app_orchestration_config.model_config.stop, stream=True, user=self.user_id, callbacks=[], ) tool_calls: List[Tuple[str, str, Dict[str, Any]]] = [] # save full response response = '' # save tool call names and inputs tool_call_names = '' tool_call_inputs = '' current_llm_usage = None for chunk in chunks: # check if there is any tool call if self.check_tool_calls(chunk): function_call_state = True tool_calls.extend(self.extract_tool_calls(chunk)) tool_call_names = ';'.join([tool_call[1] for tool_call in tool_calls]) try: tool_call_inputs = json.dumps({ tool_call[1]: tool_call[2] for tool_call in tool_calls }, ensure_ascii=False) except json.JSONDecodeError as e: # ensure ascii to avoid encoding error tool_call_inputs = json.dumps({ tool_call[1]: tool_call[2] for tool_call in tool_calls }) if chunk.delta.message and chunk.delta.message.content: if isinstance(chunk.delta.message.content, list): for content in chunk.delta.message.content: response += content.data else: response += chunk.delta.message.content if chunk.delta.usage: increase_usage(llm_usage, chunk.delta.usage) current_llm_usage = chunk.delta.usage yield chunk # save thought self.save_agent_thought( agent_thought=agent_thought, tool_name=tool_call_names, tool_input=tool_call_inputs, thought=response, observation=None, answer=response, messages_ids=[], llm_usage=current_llm_usage ) self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER) final_answer += response + '\n' # call tools tool_responses = [] for tool_call_id, tool_call_name, tool_call_args in tool_calls: tool_instance = tool_instances.get(tool_call_name) if not tool_instance: tool_response = { "tool_call_id": tool_call_id, "tool_call_name": tool_call_name, "tool_response": f"there is not a tool named {tool_call_name}" } tool_responses.append(tool_response) else: # invoke tool error_response = None try: tool_invoke_message = tool_instance.invoke( user_id=self.user_id, tool_paramters=tool_call_args, ) # transform tool invoke message to get LLM friendly message tool_invoke_message = self.transform_tool_invoke_messages(tool_invoke_message) # extract binary data from tool invoke message binary_files = self.extract_tool_response_binary(tool_invoke_message) # create message file message_files = self.create_message_files(binary_files) # publish files for message_file, save_as in message_files: if save_as: self.variables_pool.set_file(tool_name=tool_call_name, value=message_file.id, name=save_as) # publish message file self.queue_manager.publish_message_file(message_file, PublishFrom.APPLICATION_MANAGER) # add message file ids message_file_ids.append(message_file.id) except ToolProviderCredentialValidationError as e: error_response = f"Plese check your tool provider credentials" except ( ToolNotFoundError, ToolNotSupportedError, ToolProviderNotFoundError ) as e: error_response = f"there is not a tool named {tool_call_name}" except ( ToolParamterValidationError ) as e: error_response = f"tool paramters validation error: {e}, please check your tool paramters" except ToolInvokeError as e: error_response = f"tool invoke error: {e}" except Exception as e: error_response = f"unknown error: {e}" if error_response: observation = error_response tool_response = { "tool_call_id": tool_call_id, "tool_call_name": tool_call_name, "tool_response": error_response } tool_responses.append(tool_response) else: observation = self._convert_tool_response_to_str(tool_invoke_message) tool_response = { "tool_call_id": tool_call_id, "tool_call_name": tool_call_name, "tool_response": observation } tool_responses.append(tool_response) prompt_messages = self.organize_prompt_messages( prompt_template=prompt_template, query=None, tool_call_id=tool_call_id, tool_call_name=tool_call_name, tool_response=tool_response['tool_response'], prompt_messages=prompt_messages, ) if len(tool_responses) > 0: # save agent thought self.save_agent_thought( agent_thought=agent_thought, tool_name=None, tool_input=None, thought=None, observation=tool_response['tool_response'], answer=None, messages_ids=message_file_ids ) self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER) # update prompt messages if response.strip(): prompt_messages.append(AssistantPromptMessage( content=response, )) # update prompt tool for prompt_tool in prompt_messages_tools: self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool) iteration_step += 1 self.update_db_variables(self.variables_pool, self.db_variables_pool) # publish end event self.queue_manager.publish_message_end(LLMResult( model=model_instance.model, prompt_messages=prompt_messages, message=AssistantPromptMessage( content=final_answer, ), usage=llm_usage['usage'], system_fingerprint='' ), PublishFrom.APPLICATION_MANAGER) def check_tool_calls(self, llm_result_chunk: LLMResultChunk) -> bool: """ Check if there is any tool call in llm result chunk """ if llm_result_chunk.delta.message.tool_calls: return True return False def extract_tool_calls(self, llm_result_chunk: LLMResultChunk) -> Union[None, List[Tuple[str, str, Dict[str, Any]]]]: """ Extract tool calls from llm result chunk Returns: List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)] """ tool_calls = [] for prompt_message in llm_result_chunk.delta.message.tool_calls: tool_calls.append(( prompt_message.id, prompt_message.function.name, json.loads(prompt_message.function.arguments), )) return tool_calls def organize_prompt_messages(self, prompt_template: str, query: str = None, tool_call_id: str = None, tool_call_name: str = None, tool_response: str = None, prompt_messages: list[PromptMessage] = None ) -> list[PromptMessage]: """ Organize prompt messages """ if not prompt_messages: prompt_messages = [ SystemPromptMessage(content=prompt_template), UserPromptMessage(content=query), ] else: if tool_response: prompt_messages = prompt_messages.copy() prompt_messages.append( ToolPromptMessage( content=tool_response, tool_call_id=tool_call_id, name=tool_call_name, ) ) return prompt_messages