import base64 import json import logging from typing import List, Optional import numpy as np from core.model_manager import ModelInstance from extensions.ext_database import db from langchain.embeddings.base import Embeddings from extensions.ext_redis import redis_client from libs import helper from models.dataset import Embedding from sqlalchemy.exc import IntegrityError logger = logging.getLogger(__name__) class CacheEmbedding(Embeddings): def __init__(self, model_instance: ModelInstance, user: Optional[str] = None) -> None: self._model_instance = model_instance self._user = user def embed_documents(self, texts: List[str]) -> List[List[float]]: """Embed search docs.""" # use doc embedding cache or store if not exists text_embeddings = [None for _ in range(len(texts))] embedding_queue_indices = [] for i, text in enumerate(texts): hash = helper.generate_text_hash(text) embedding_cache_key = f'{self._model_instance.provider}_{self._model_instance.model}_{hash}' embedding = redis_client.get(embedding_cache_key) if embedding: redis_client.expire(embedding_cache_key, 3600) text_embeddings[i] = list(np.frombuffer(base64.b64decode(embedding), dtype="float")) else: embedding_queue_indices.append(i) if embedding_queue_indices: try: embedding_result = self._model_instance.invoke_text_embedding( texts=[texts[i] for i in embedding_queue_indices], user=self._user ) embedding_results = embedding_result.embeddings except Exception as ex: logger.error('Failed to embed documents: ', ex) raise ex for i, indice in enumerate(embedding_queue_indices): hash = helper.generate_text_hash(texts[indice]) try: embedding_cache_key = f'{self._model_instance.provider}_{self._model_instance.model}_{hash}' vector = embedding_results[i] normalized_embedding = (vector / np.linalg.norm(vector)).tolist() text_embeddings[indice] = normalized_embedding # encode embedding to base64 embedding_vector = np.array(normalized_embedding) vector_bytes = embedding_vector.tobytes() # Transform to Base64 encoded_vector = base64.b64encode(vector_bytes) # Transform to string encoded_str = encoded_vector.decode("utf-8") redis_client.setex(embedding_cache_key, 3600, encoded_str) except IntegrityError: db.session.rollback() continue except: logging.exception('Failed to add embedding to redis') continue return text_embeddings def embed_query(self, text: str) -> List[float]: """Embed query text.""" # use doc embedding cache or store if not exists hash = helper.generate_text_hash(text) embedding_cache_key = f'{self._model_instance.provider}_{self._model_instance.model}_{hash}' embedding = redis_client.get(embedding_cache_key) if embedding: redis_client.expire(embedding_cache_key, 3600) return list(np.frombuffer(base64.b64decode(embedding), dtype="float")) try: embedding_result = self._model_instance.invoke_text_embedding( texts=[text], user=self._user ) embedding_results = embedding_result.embeddings[0] embedding_results = (embedding_results / np.linalg.norm(embedding_results)).tolist() except Exception as ex: raise ex try: # encode embedding to base64 embedding_vector = np.array(embedding_results) vector_bytes = embedding_vector.tobytes() # Transform to Base64 encoded_vector = base64.b64encode(vector_bytes) # Transform to string encoded_str = encoded_vector.decode("utf-8") redis_client.setex(embedding_cache_key, 3600, encoded_str) except IntegrityError: db.session.rollback() except: logging.exception('Failed to add embedding to redis') return embedding_results