import os from collections.abc import Generator import pytest from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta from core.model_runtime.entities.message_entities import ( AssistantPromptMessage, ImagePromptMessageContent, PromptMessageTool, SystemPromptMessage, TextPromptMessageContent, UserPromptMessage, ) from core.model_runtime.entities.model_entities import AIModelEntity, ModelType from core.model_runtime.errors.validate import CredentialsValidateFailedError from core.model_runtime.model_providers.stepfun.llm.llm import StepfunLargeLanguageModel def test_validate_credentials(): model = StepfunLargeLanguageModel() with pytest.raises(CredentialsValidateFailedError): model.validate_credentials( model='step-1-8k', credentials={ 'api_key': 'invalid_key' } ) model.validate_credentials( model='step-1-8k', credentials={ 'api_key': os.environ.get('STEPFUN_API_KEY') } ) def test_invoke_model(): model = StepfunLargeLanguageModel() response = model.invoke( model='step-1-8k', credentials={ 'api_key': os.environ.get('STEPFUN_API_KEY') }, prompt_messages=[ UserPromptMessage( content='Hello World!' ) ], model_parameters={ 'temperature': 0.9, 'top_p': 0.7 }, stop=['Hi'], stream=False, user="abc-123" ) assert isinstance(response, LLMResult) assert len(response.message.content) > 0 def test_invoke_stream_model(): model = StepfunLargeLanguageModel() response = model.invoke( model='step-1-8k', credentials={ 'api_key': os.environ.get('STEPFUN_API_KEY') }, prompt_messages=[ SystemPromptMessage( content='You are a helpful AI assistant.', ), UserPromptMessage( content='Hello World!' ) ], model_parameters={ 'temperature': 0.9, 'top_p': 0.7 }, stream=True, user="abc-123" ) assert isinstance(response, Generator) for chunk in response: assert isinstance(chunk, LLMResultChunk) assert isinstance(chunk.delta, LLMResultChunkDelta) assert isinstance(chunk.delta.message, AssistantPromptMessage) assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True def test_get_customizable_model_schema(): model = StepfunLargeLanguageModel() schema = model.get_customizable_model_schema( model='step-1-8k', credentials={ 'api_key': os.environ.get('STEPFUN_API_KEY') } ) assert isinstance(schema, AIModelEntity) def test_invoke_chat_model_with_tools(): model = StepfunLargeLanguageModel() result = model.invoke( model='step-1-8k', credentials={ 'api_key': os.environ.get('STEPFUN_API_KEY') }, prompt_messages=[ SystemPromptMessage( content='You are a helpful AI assistant.', ), UserPromptMessage( content="what's the weather today in Shanghai?", ) ], model_parameters={ 'temperature': 0.9, 'max_tokens': 100 }, tools=[ PromptMessageTool( name='get_weather', description='Determine weather in my location', parameters={ "type": "object", "properties": { "location": { "type": "string", "description": "The city and state e.g. San Francisco, CA" }, "unit": { "type": "string", "enum": [ "c", "f" ] } }, "required": [ "location" ] } ), PromptMessageTool( name='get_stock_price', description='Get the current stock price', parameters={ "type": "object", "properties": { "symbol": { "type": "string", "description": "The stock symbol" } }, "required": [ "symbol" ] } ) ], stream=False, user="abc-123" ) assert isinstance(result, LLMResult) assert isinstance(result.message, AssistantPromptMessage) assert len(result.message.tool_calls) > 0