|
@@ -102,8 +102,6 @@ class LindormVectorStore(BaseVector):
|
|
|
if response["errors"]:
|
|
|
for item in response["items"]:
|
|
|
print(f"{item['index']['status']}: {item['index']['error']['type']}")
|
|
|
- else:
|
|
|
- self.refresh()
|
|
|
|
|
|
def get_ids_by_metadata_field(self, key: str, value: str):
|
|
|
query: dict[str, Any] = {
|
|
@@ -167,7 +165,7 @@ class LindormVectorStore(BaseVector):
|
|
|
if not all(isinstance(x, float) for x in query_vector):
|
|
|
raise ValueError("All elements in query_vector should be floats")
|
|
|
|
|
|
- top_k = kwargs.get("top_k", 10)
|
|
|
+ top_k = kwargs.get("top_k", 3)
|
|
|
document_ids_filter = kwargs.get("document_ids_filter")
|
|
|
filters = []
|
|
|
if document_ids_filter:
|
|
@@ -210,7 +208,7 @@ class LindormVectorStore(BaseVector):
|
|
|
must_not = kwargs.get("must_not")
|
|
|
should = kwargs.get("should")
|
|
|
minimum_should_match = kwargs.get("minimum_should_match", 0)
|
|
|
- top_k = kwargs.get("top_k", 10)
|
|
|
+ top_k = kwargs.get("top_k", 3)
|
|
|
filters = kwargs.get("filter", [])
|
|
|
document_ids_filter = kwargs.get("document_ids_filter")
|
|
|
if document_ids_filter:
|
|
@@ -295,7 +293,7 @@ class LindormVectorStore(BaseVector):
|
|
|
|
|
|
|
|
|
def default_text_mapping(dimension: int, method_name: str, **kwargs: Any) -> dict:
|
|
|
- excludes_from_source = kwargs.get("excludes_from_source")
|
|
|
+ excludes_from_source = kwargs.get("excludes_from_source", False)
|
|
|
analyzer = kwargs.get("analyzer", "ik_max_word")
|
|
|
text_field = kwargs.get("text_field", Field.CONTENT_KEY.value)
|
|
|
engine = kwargs["engine"]
|
|
@@ -356,12 +354,12 @@ def default_text_mapping(dimension: int, method_name: str, **kwargs: Any) -> dic
|
|
|
|
|
|
if excludes_from_source:
|
|
|
# e.g. {"excludes": ["vector_field"]}
|
|
|
- mapping["mappings"]["_source"] = {"excludes": excludes_from_source}
|
|
|
+ mapping["mappings"]["_source"] = {"excludes": [vector_field]}
|
|
|
|
|
|
if using_ugc and method_name == "ivfpq":
|
|
|
mapping["settings"]["index"]["knn_routing"] = True
|
|
|
mapping["settings"]["index"]["knn.offline.construction"] = True
|
|
|
- elif using_ugc and method_name == "hnsw" or using_ugc and method_name == "flat":
|
|
|
+ elif (using_ugc and method_name == "hnsw") or (using_ugc and method_name == "flat"):
|
|
|
mapping["settings"]["index"]["knn_routing"] = True
|
|
|
return mapping
|
|
|
|
|
@@ -458,7 +456,7 @@ def default_vector_search_query(
|
|
|
"query": {"knn": {vector_field: {"vector": query_vector, "k": k}}},
|
|
|
}
|
|
|
|
|
|
- if filters is not None:
|
|
|
+ if filters is not None and len(filters) > 0:
|
|
|
# when using filter, transform filter from List[Dict] to Dict as valid format
|
|
|
filter_dict = {"bool": {"must": filters}} if len(filters) > 1 else filters[0]
|
|
|
search_query["query"]["knn"][vector_field]["filter"] = filter_dict # filter should be Dict
|