|
@@ -1,10 +1,12 @@
|
|
|
import base64
|
|
|
import json
|
|
|
import logging
|
|
|
-from typing import List, Optional
|
|
|
+from typing import List, Optional, cast
|
|
|
|
|
|
import numpy as np
|
|
|
from core.model_manager import ModelInstance
|
|
|
+from core.model_runtime.entities.model_entities import ModelPropertyKey
|
|
|
+from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
|
|
|
from extensions.ext_database import db
|
|
|
from langchain.embeddings.base import Embeddings
|
|
|
|
|
@@ -22,56 +24,33 @@ class CacheEmbedding(Embeddings):
|
|
|
self._user = user
|
|
|
|
|
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
|
- """Embed search docs."""
|
|
|
- # use doc embedding cache or store if not exists
|
|
|
- text_embeddings = [None for _ in range(len(texts))]
|
|
|
- embedding_queue_indices = []
|
|
|
- for i, text in enumerate(texts):
|
|
|
- hash = helper.generate_text_hash(text)
|
|
|
- embedding_cache_key = f'{self._model_instance.provider}_{self._model_instance.model}_{hash}'
|
|
|
- embedding = redis_client.get(embedding_cache_key)
|
|
|
- if embedding:
|
|
|
- redis_client.expire(embedding_cache_key, 3600)
|
|
|
- text_embeddings[i] = list(np.frombuffer(base64.b64decode(embedding), dtype="float"))
|
|
|
-
|
|
|
- else:
|
|
|
- embedding_queue_indices.append(i)
|
|
|
-
|
|
|
- if embedding_queue_indices:
|
|
|
- try:
|
|
|
+ """Embed search docs in batches of 10."""
|
|
|
+ text_embeddings = []
|
|
|
+ try:
|
|
|
+ model_type_instance = cast(TextEmbeddingModel, self._model_instance.model_type_instance)
|
|
|
+ model_schema = model_type_instance.get_model_schema(self._model_instance.model, self._model_instance.credentials)
|
|
|
+ max_chunks = model_schema.model_properties[ModelPropertyKey.MAX_CHUNKS] \
|
|
|
+ if model_schema and ModelPropertyKey.MAX_CHUNKS in model_schema.model_properties else 1
|
|
|
+ for i in range(0, len(texts), max_chunks):
|
|
|
+ batch_texts = texts[i:i + max_chunks]
|
|
|
+
|
|
|
embedding_result = self._model_instance.invoke_text_embedding(
|
|
|
- texts=[texts[i] for i in embedding_queue_indices],
|
|
|
+ texts=batch_texts,
|
|
|
user=self._user
|
|
|
)
|
|
|
|
|
|
- embedding_results = embedding_result.embeddings
|
|
|
- except Exception as ex:
|
|
|
- logger.error('Failed to embed documents: ', ex)
|
|
|
- raise ex
|
|
|
-
|
|
|
- for i, indice in enumerate(embedding_queue_indices):
|
|
|
- hash = helper.generate_text_hash(texts[indice])
|
|
|
-
|
|
|
- try:
|
|
|
- embedding_cache_key = f'{self._model_instance.provider}_{self._model_instance.model}_{hash}'
|
|
|
- vector = embedding_results[i]
|
|
|
- normalized_embedding = (vector / np.linalg.norm(vector)).tolist()
|
|
|
- text_embeddings[indice] = normalized_embedding
|
|
|
- # encode embedding to base64
|
|
|
- embedding_vector = np.array(normalized_embedding)
|
|
|
- vector_bytes = embedding_vector.tobytes()
|
|
|
- # Transform to Base64
|
|
|
- encoded_vector = base64.b64encode(vector_bytes)
|
|
|
- # Transform to string
|
|
|
- encoded_str = encoded_vector.decode("utf-8")
|
|
|
- redis_client.setex(embedding_cache_key, 3600, encoded_str)
|
|
|
-
|
|
|
- except IntegrityError:
|
|
|
- db.session.rollback()
|
|
|
- continue
|
|
|
- except:
|
|
|
- logging.exception('Failed to add embedding to redis')
|
|
|
- continue
|
|
|
+ for vector in embedding_result.embeddings:
|
|
|
+ try:
|
|
|
+ normalized_embedding = (vector / np.linalg.norm(vector)).tolist()
|
|
|
+ text_embeddings.append(normalized_embedding)
|
|
|
+ except IntegrityError:
|
|
|
+ db.session.rollback()
|
|
|
+ except Exception as e:
|
|
|
+ logging.exception('Failed to add embedding to redis')
|
|
|
+
|
|
|
+ except Exception as ex:
|
|
|
+ logger.error('Failed to embed documents: ', ex)
|
|
|
+ raise ex
|
|
|
|
|
|
return text_embeddings
|
|
|
|
|
@@ -82,7 +61,7 @@ class CacheEmbedding(Embeddings):
|
|
|
embedding_cache_key = f'{self._model_instance.provider}_{self._model_instance.model}_{hash}'
|
|
|
embedding = redis_client.get(embedding_cache_key)
|
|
|
if embedding:
|
|
|
- redis_client.expire(embedding_cache_key, 3600)
|
|
|
+ redis_client.expire(embedding_cache_key, 600)
|
|
|
return list(np.frombuffer(base64.b64decode(embedding), dtype="float"))
|
|
|
|
|
|
|
|
@@ -105,7 +84,7 @@ class CacheEmbedding(Embeddings):
|
|
|
encoded_vector = base64.b64encode(vector_bytes)
|
|
|
# Transform to string
|
|
|
encoded_str = encoded_vector.decode("utf-8")
|
|
|
- redis_client.setex(embedding_cache_key, 3600, encoded_str)
|
|
|
+ redis_client.setex(embedding_cache_key, 600, encoded_str)
|
|
|
|
|
|
except IntegrityError:
|
|
|
db.session.rollback()
|