|
@@ -378,6 +378,11 @@ class OpenAILargeLanguageModel(_CommonOpenAI, LargeLanguageModel):
|
|
|
if user:
|
|
|
extra_model_kwargs['user'] = user
|
|
|
|
|
|
+ if stream:
|
|
|
+ extra_model_kwargs['stream_options'] = {
|
|
|
+ "include_usage": True
|
|
|
+ }
|
|
|
+
|
|
|
|
|
|
response = client.completions.create(
|
|
|
prompt=prompt_messages[0].content,
|
|
@@ -446,8 +451,24 @@ class OpenAILargeLanguageModel(_CommonOpenAI, LargeLanguageModel):
|
|
|
:return: llm response chunk generator result
|
|
|
"""
|
|
|
full_text = ''
|
|
|
+ prompt_tokens = 0
|
|
|
+ completion_tokens = 0
|
|
|
+
|
|
|
+ final_chunk = LLMResultChunk(
|
|
|
+ model=model,
|
|
|
+ prompt_messages=prompt_messages,
|
|
|
+ delta=LLMResultChunkDelta(
|
|
|
+ index=0,
|
|
|
+ message=AssistantPromptMessage(content=''),
|
|
|
+ )
|
|
|
+ )
|
|
|
+
|
|
|
for chunk in response:
|
|
|
if len(chunk.choices) == 0:
|
|
|
+ if chunk.usage:
|
|
|
+
|
|
|
+ prompt_tokens = chunk.usage.prompt_tokens
|
|
|
+ completion_tokens = chunk.usage.completion_tokens
|
|
|
continue
|
|
|
|
|
|
delta = chunk.choices[0]
|
|
@@ -464,20 +485,7 @@ class OpenAILargeLanguageModel(_CommonOpenAI, LargeLanguageModel):
|
|
|
full_text += text
|
|
|
|
|
|
if delta.finish_reason is not None:
|
|
|
-
|
|
|
- if chunk.usage:
|
|
|
-
|
|
|
- prompt_tokens = chunk.usage.prompt_tokens
|
|
|
- completion_tokens = chunk.usage.completion_tokens
|
|
|
- else:
|
|
|
-
|
|
|
- prompt_tokens = self._num_tokens_from_string(model, prompt_messages[0].content)
|
|
|
- completion_tokens = self._num_tokens_from_string(model, full_text)
|
|
|
-
|
|
|
-
|
|
|
- usage = self._calc_response_usage(model, credentials, prompt_tokens, completion_tokens)
|
|
|
-
|
|
|
- yield LLMResultChunk(
|
|
|
+ final_chunk = LLMResultChunk(
|
|
|
model=chunk.model,
|
|
|
prompt_messages=prompt_messages,
|
|
|
system_fingerprint=chunk.system_fingerprint,
|
|
@@ -485,7 +493,6 @@ class OpenAILargeLanguageModel(_CommonOpenAI, LargeLanguageModel):
|
|
|
index=delta.index,
|
|
|
message=assistant_prompt_message,
|
|
|
finish_reason=delta.finish_reason,
|
|
|
- usage=usage
|
|
|
)
|
|
|
)
|
|
|
else:
|
|
@@ -499,6 +506,19 @@ class OpenAILargeLanguageModel(_CommonOpenAI, LargeLanguageModel):
|
|
|
)
|
|
|
)
|
|
|
|
|
|
+ if not prompt_tokens:
|
|
|
+ prompt_tokens = self._num_tokens_from_string(model, prompt_messages[0].content)
|
|
|
+
|
|
|
+ if not completion_tokens:
|
|
|
+ completion_tokens = self._num_tokens_from_string(model, full_text)
|
|
|
+
|
|
|
+
|
|
|
+ usage = self._calc_response_usage(model, credentials, prompt_tokens, completion_tokens)
|
|
|
+
|
|
|
+ final_chunk.delta.usage = usage
|
|
|
+
|
|
|
+ yield final_chunk
|
|
|
+
|
|
|
def _chat_generate(self, model: str, credentials: dict,
|
|
|
prompt_messages: list[PromptMessage], model_parameters: dict,
|
|
|
tools: Optional[list[PromptMessageTool]] = None, stop: Optional[list[str]] = None,
|
|
@@ -531,6 +551,7 @@ class OpenAILargeLanguageModel(_CommonOpenAI, LargeLanguageModel):
|
|
|
|
|
|
model_parameters["response_format"] = response_format
|
|
|
|
|
|
+
|
|
|
extra_model_kwargs = {}
|
|
|
|
|
|
if tools:
|
|
@@ -547,6 +568,11 @@ class OpenAILargeLanguageModel(_CommonOpenAI, LargeLanguageModel):
|
|
|
if user:
|
|
|
extra_model_kwargs['user'] = user
|
|
|
|
|
|
+ if stream:
|
|
|
+ extra_model_kwargs['stream_options'] = {
|
|
|
+ 'include_usage': True
|
|
|
+ }
|
|
|
+
|
|
|
|
|
|
prompt_messages = self._clear_illegal_prompt_messages(model, prompt_messages)
|
|
|
|
|
@@ -630,8 +656,24 @@ class OpenAILargeLanguageModel(_CommonOpenAI, LargeLanguageModel):
|
|
|
"""
|
|
|
full_assistant_content = ''
|
|
|
delta_assistant_message_function_call_storage: ChoiceDeltaFunctionCall = None
|
|
|
+ prompt_tokens = 0
|
|
|
+ completion_tokens = 0
|
|
|
+ final_tool_calls = []
|
|
|
+ final_chunk = LLMResultChunk(
|
|
|
+ model=model,
|
|
|
+ prompt_messages=prompt_messages,
|
|
|
+ delta=LLMResultChunkDelta(
|
|
|
+ index=0,
|
|
|
+ message=AssistantPromptMessage(content=''),
|
|
|
+ )
|
|
|
+ )
|
|
|
+
|
|
|
for chunk in response:
|
|
|
if len(chunk.choices) == 0:
|
|
|
+ if chunk.usage:
|
|
|
+
|
|
|
+ prompt_tokens = chunk.usage.prompt_tokens
|
|
|
+ completion_tokens = chunk.usage.completion_tokens
|
|
|
continue
|
|
|
|
|
|
delta = chunk.choices[0]
|
|
@@ -667,6 +709,8 @@ class OpenAILargeLanguageModel(_CommonOpenAI, LargeLanguageModel):
|
|
|
|
|
|
function_call = self._extract_response_function_call(assistant_message_function_call)
|
|
|
tool_calls = [function_call] if function_call else []
|
|
|
+ if tool_calls:
|
|
|
+ final_tool_calls.extend(tool_calls)
|
|
|
|
|
|
|
|
|
assistant_prompt_message = AssistantPromptMessage(
|
|
@@ -677,19 +721,7 @@ class OpenAILargeLanguageModel(_CommonOpenAI, LargeLanguageModel):
|
|
|
full_assistant_content += delta.delta.content if delta.delta.content else ''
|
|
|
|
|
|
if has_finish_reason:
|
|
|
-
|
|
|
- prompt_tokens = self._num_tokens_from_messages(model, prompt_messages, tools)
|
|
|
-
|
|
|
- full_assistant_prompt_message = AssistantPromptMessage(
|
|
|
- content=full_assistant_content,
|
|
|
- tool_calls=tool_calls
|
|
|
- )
|
|
|
- completion_tokens = self._num_tokens_from_messages(model, [full_assistant_prompt_message])
|
|
|
-
|
|
|
-
|
|
|
- usage = self._calc_response_usage(model, credentials, prompt_tokens, completion_tokens)
|
|
|
-
|
|
|
- yield LLMResultChunk(
|
|
|
+ final_chunk = LLMResultChunk(
|
|
|
model=chunk.model,
|
|
|
prompt_messages=prompt_messages,
|
|
|
system_fingerprint=chunk.system_fingerprint,
|
|
@@ -697,7 +729,6 @@ class OpenAILargeLanguageModel(_CommonOpenAI, LargeLanguageModel):
|
|
|
index=delta.index,
|
|
|
message=assistant_prompt_message,
|
|
|
finish_reason=delta.finish_reason,
|
|
|
- usage=usage
|
|
|
)
|
|
|
)
|
|
|
else:
|
|
@@ -711,6 +742,22 @@ class OpenAILargeLanguageModel(_CommonOpenAI, LargeLanguageModel):
|
|
|
)
|
|
|
)
|
|
|
|
|
|
+ if not prompt_tokens:
|
|
|
+ prompt_tokens = self._num_tokens_from_messages(model, prompt_messages, tools)
|
|
|
+
|
|
|
+ if not completion_tokens:
|
|
|
+ full_assistant_prompt_message = AssistantPromptMessage(
|
|
|
+ content=full_assistant_content,
|
|
|
+ tool_calls=final_tool_calls
|
|
|
+ )
|
|
|
+ completion_tokens = self._num_tokens_from_messages(model, [full_assistant_prompt_message])
|
|
|
+
|
|
|
+
|
|
|
+ usage = self._calc_response_usage(model, credentials, prompt_tokens, completion_tokens)
|
|
|
+ final_chunk.delta.usage = usage
|
|
|
+
|
|
|
+ yield final_chunk
|
|
|
+
|
|
|
def _extract_response_tool_calls(self,
|
|
|
response_tool_calls: list[ChatCompletionMessageToolCall | ChoiceDeltaToolCall]) \
|
|
|
-> list[AssistantPromptMessage.ToolCall]:
|