|
@@ -1,30 +1,34 @@
|
|
|
import json
|
|
|
-import re
|
|
|
+from abc import ABC, abstractmethod
|
|
|
from collections.abc import Generator
|
|
|
-from typing import Literal, Union
|
|
|
+from typing import Union
|
|
|
|
|
|
from core.agent.base_agent_runner import BaseAgentRunner
|
|
|
-from core.agent.entities import AgentPromptEntity, AgentScratchpadUnit
|
|
|
+from core.agent.entities import AgentScratchpadUnit
|
|
|
+from core.agent.output_parser.cot_output_parser import CotAgentOutputParser
|
|
|
from core.app.apps.base_app_queue_manager import PublishFrom
|
|
|
from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
|
|
|
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
|
|
|
from core.model_runtime.entities.message_entities import (
|
|
|
AssistantPromptMessage,
|
|
|
PromptMessage,
|
|
|
- PromptMessageTool,
|
|
|
- SystemPromptMessage,
|
|
|
ToolPromptMessage,
|
|
|
UserPromptMessage,
|
|
|
)
|
|
|
-from core.model_runtime.utils.encoders import jsonable_encoder
|
|
|
from core.tools.entities.tool_entities import ToolInvokeMeta
|
|
|
+from core.tools.tool.tool import Tool
|
|
|
from core.tools.tool_engine import ToolEngine
|
|
|
from models.model import Message
|
|
|
|
|
|
|
|
|
-class CotAgentRunner(BaseAgentRunner):
|
|
|
+class CotAgentRunner(BaseAgentRunner, ABC):
|
|
|
_is_first_iteration = True
|
|
|
_ignore_observation_providers = ['wenxin']
|
|
|
+ _historic_prompt_messages: list[PromptMessage] = None
|
|
|
+ _agent_scratchpad: list[AgentScratchpadUnit] = None
|
|
|
+ _instruction: str = None
|
|
|
+ _query: str = None
|
|
|
+ _prompt_messages_tools: list[PromptMessage] = None
|
|
|
|
|
|
def run(self, message: Message,
|
|
|
query: str,
|
|
@@ -35,9 +39,7 @@ class CotAgentRunner(BaseAgentRunner):
|
|
|
"""
|
|
|
app_generate_entity = self.application_generate_entity
|
|
|
self._repack_app_generate_entity(app_generate_entity)
|
|
|
-
|
|
|
- agent_scratchpad: list[AgentScratchpadUnit] = []
|
|
|
- self._init_agent_scratchpad(agent_scratchpad, self.history_prompt_messages)
|
|
|
+ self._init_react_state(query)
|
|
|
|
|
|
# check model mode
|
|
|
if 'Observation' not in app_generate_entity.model_config.stop:
|
|
@@ -46,38 +48,19 @@ class CotAgentRunner(BaseAgentRunner):
|
|
|
|
|
|
app_config = self.app_config
|
|
|
|
|
|
- # override inputs
|
|
|
+ # init instruction
|
|
|
inputs = inputs or {}
|
|
|
instruction = app_config.prompt_template.simple_prompt_template
|
|
|
- instruction = self._fill_in_inputs_from_external_data_tools(instruction, inputs)
|
|
|
+ self._instruction = self._fill_in_inputs_from_external_data_tools(instruction, inputs)
|
|
|
|
|
|
iteration_step = 1
|
|
|
max_iteration_steps = min(app_config.agent.max_iteration, 5) + 1
|
|
|
|
|
|
- prompt_messages = self.history_prompt_messages
|
|
|
-
|
|
|
# convert tools into ModelRuntime Tool format
|
|
|
- prompt_messages_tools: list[PromptMessageTool] = []
|
|
|
- tool_instances = {}
|
|
|
- for tool in app_config.agent.tools if app_config.agent else []:
|
|
|
- try:
|
|
|
- prompt_tool, tool_entity = self._convert_tool_to_prompt_message_tool(tool)
|
|
|
- except Exception:
|
|
|
- # api tool may be deleted
|
|
|
- continue
|
|
|
- # save tool entity
|
|
|
- tool_instances[tool.tool_name] = tool_entity
|
|
|
- # save prompt tool
|
|
|
- prompt_messages_tools.append(prompt_tool)
|
|
|
-
|
|
|
- # convert dataset tools into ModelRuntime Tool format
|
|
|
- for dataset_tool in self.dataset_tools:
|
|
|
- prompt_tool = self._convert_dataset_retriever_tool_to_prompt_message_tool(dataset_tool)
|
|
|
- # save prompt tool
|
|
|
- prompt_messages_tools.append(prompt_tool)
|
|
|
- # save tool entity
|
|
|
- tool_instances[dataset_tool.identity.name] = dataset_tool
|
|
|
+ tool_instances, self._prompt_messages_tools = self._init_prompt_tools()
|
|
|
|
|
|
+ prompt_messages = self._organize_prompt_messages()
|
|
|
+
|
|
|
function_call_state = True
|
|
|
llm_usage = {
|
|
|
'usage': None
|
|
@@ -102,7 +85,7 @@ class CotAgentRunner(BaseAgentRunner):
|
|
|
|
|
|
if iteration_step == max_iteration_steps:
|
|
|
# the last iteration, remove all tools
|
|
|
- prompt_messages_tools = []
|
|
|
+ self._prompt_messages_tools = []
|
|
|
|
|
|
message_file_ids = []
|
|
|
|
|
@@ -119,18 +102,8 @@ class CotAgentRunner(BaseAgentRunner):
|
|
|
agent_thought_id=agent_thought.id
|
|
|
), PublishFrom.APPLICATION_MANAGER)
|
|
|
|
|
|
- # update prompt messages
|
|
|
- prompt_messages = self._organize_cot_prompt_messages(
|
|
|
- mode=app_generate_entity.model_config.mode,
|
|
|
- prompt_messages=prompt_messages,
|
|
|
- tools=prompt_messages_tools,
|
|
|
- agent_scratchpad=agent_scratchpad,
|
|
|
- agent_prompt_message=app_config.agent.prompt,
|
|
|
- instruction=instruction,
|
|
|
- input=query
|
|
|
- )
|
|
|
-
|
|
|
# recalc llm max tokens
|
|
|
+ prompt_messages = self._organize_prompt_messages()
|
|
|
self.recalc_llm_max_tokens(self.model_config, prompt_messages)
|
|
|
# invoke model
|
|
|
chunks: Generator[LLMResultChunk, None, None] = model_instance.invoke_llm(
|
|
@@ -148,7 +121,7 @@ class CotAgentRunner(BaseAgentRunner):
|
|
|
raise ValueError("failed to invoke llm")
|
|
|
|
|
|
usage_dict = {}
|
|
|
- react_chunks = self._handle_stream_react(chunks, usage_dict)
|
|
|
+ react_chunks = CotAgentOutputParser.handle_react_stream_output(chunks)
|
|
|
scratchpad = AgentScratchpadUnit(
|
|
|
agent_response='',
|
|
|
thought='',
|
|
@@ -164,30 +137,12 @@ class CotAgentRunner(BaseAgentRunner):
|
|
|
), PublishFrom.APPLICATION_MANAGER)
|
|
|
|
|
|
for chunk in react_chunks:
|
|
|
- if isinstance(chunk, dict):
|
|
|
- scratchpad.agent_response += json.dumps(chunk)
|
|
|
- try:
|
|
|
- if scratchpad.action:
|
|
|
- raise Exception("")
|
|
|
- scratchpad.action_str = json.dumps(chunk)
|
|
|
- scratchpad.action = AgentScratchpadUnit.Action(
|
|
|
- action_name=chunk['action'],
|
|
|
- action_input=chunk['action_input']
|
|
|
- )
|
|
|
- except:
|
|
|
- scratchpad.thought += json.dumps(chunk)
|
|
|
- yield LLMResultChunk(
|
|
|
- model=self.model_config.model,
|
|
|
- prompt_messages=prompt_messages,
|
|
|
- system_fingerprint='',
|
|
|
- delta=LLMResultChunkDelta(
|
|
|
- index=0,
|
|
|
- message=AssistantPromptMessage(
|
|
|
- content=json.dumps(chunk, ensure_ascii=False) # if ensure_ascii=True, the text in webui maybe garbled text
|
|
|
- ),
|
|
|
- usage=None
|
|
|
- )
|
|
|
- )
|
|
|
+ if isinstance(chunk, AgentScratchpadUnit.Action):
|
|
|
+ action = chunk
|
|
|
+ # detect action
|
|
|
+ scratchpad.agent_response += json.dumps(chunk.dict())
|
|
|
+ scratchpad.action_str = json.dumps(chunk.dict())
|
|
|
+ scratchpad.action = action
|
|
|
else:
|
|
|
scratchpad.agent_response += chunk
|
|
|
scratchpad.thought += chunk
|
|
@@ -205,27 +160,29 @@ class CotAgentRunner(BaseAgentRunner):
|
|
|
)
|
|
|
|
|
|
scratchpad.thought = scratchpad.thought.strip() or 'I am thinking about how to help you'
|
|
|
- agent_scratchpad.append(scratchpad)
|
|
|
-
|
|
|
+ self._agent_scratchpad.append(scratchpad)
|
|
|
+
|
|
|
# get llm usage
|
|
|
if 'usage' in usage_dict:
|
|
|
increase_usage(llm_usage, usage_dict['usage'])
|
|
|
else:
|
|
|
usage_dict['usage'] = LLMUsage.empty_usage()
|
|
|
|
|
|
- self.save_agent_thought(agent_thought=agent_thought,
|
|
|
- tool_name=scratchpad.action.action_name if scratchpad.action else '',
|
|
|
- tool_input={
|
|
|
- scratchpad.action.action_name: scratchpad.action.action_input
|
|
|
- } if scratchpad.action else '',
|
|
|
- tool_invoke_meta={},
|
|
|
- thought=scratchpad.thought,
|
|
|
- observation='',
|
|
|
- answer=scratchpad.agent_response,
|
|
|
- messages_ids=[],
|
|
|
- llm_usage=usage_dict['usage'])
|
|
|
+ self.save_agent_thought(
|
|
|
+ agent_thought=agent_thought,
|
|
|
+ tool_name=scratchpad.action.action_name if scratchpad.action else '',
|
|
|
+ tool_input={
|
|
|
+ scratchpad.action.action_name: scratchpad.action.action_input
|
|
|
+ } if scratchpad.action else {},
|
|
|
+ tool_invoke_meta={},
|
|
|
+ thought=scratchpad.thought,
|
|
|
+ observation='',
|
|
|
+ answer=scratchpad.agent_response,
|
|
|
+ messages_ids=[],
|
|
|
+ llm_usage=usage_dict['usage']
|
|
|
+ )
|
|
|
|
|
|
- if scratchpad.action and scratchpad.action.action_name.lower() != "final answer":
|
|
|
+ if not scratchpad.is_final():
|
|
|
self.queue_manager.publish(QueueAgentThoughtEvent(
|
|
|
agent_thought_id=agent_thought.id
|
|
|
), PublishFrom.APPLICATION_MANAGER)
|
|
@@ -237,106 +194,43 @@ class CotAgentRunner(BaseAgentRunner):
|
|
|
if scratchpad.action.action_name.lower() == "final answer":
|
|
|
# action is final answer, return final answer directly
|
|
|
try:
|
|
|
- final_answer = scratchpad.action.action_input if \
|
|
|
- isinstance(scratchpad.action.action_input, str) else \
|
|
|
- json.dumps(scratchpad.action.action_input)
|
|
|
+ if isinstance(scratchpad.action.action_input, dict):
|
|
|
+ final_answer = json.dumps(scratchpad.action.action_input)
|
|
|
+ elif isinstance(scratchpad.action.action_input, str):
|
|
|
+ final_answer = scratchpad.action.action_input
|
|
|
+ else:
|
|
|
+ final_answer = f'{scratchpad.action.action_input}'
|
|
|
except json.JSONDecodeError:
|
|
|
final_answer = f'{scratchpad.action.action_input}'
|
|
|
else:
|
|
|
function_call_state = True
|
|
|
-
|
|
|
# action is tool call, invoke tool
|
|
|
- tool_call_name = scratchpad.action.action_name
|
|
|
- tool_call_args = scratchpad.action.action_input
|
|
|
- tool_instance = tool_instances.get(tool_call_name)
|
|
|
- if not tool_instance:
|
|
|
- answer = f"there is not a tool named {tool_call_name}"
|
|
|
- self.save_agent_thought(
|
|
|
- agent_thought=agent_thought,
|
|
|
- tool_name='',
|
|
|
- tool_input='',
|
|
|
- tool_invoke_meta=ToolInvokeMeta.error_instance(
|
|
|
- f"there is not a tool named {tool_call_name}"
|
|
|
- ).to_dict(),
|
|
|
- thought=None,
|
|
|
- observation={
|
|
|
- tool_call_name: answer
|
|
|
- },
|
|
|
- answer=answer,
|
|
|
- messages_ids=[]
|
|
|
- )
|
|
|
- self.queue_manager.publish(QueueAgentThoughtEvent(
|
|
|
- agent_thought_id=agent_thought.id
|
|
|
- ), PublishFrom.APPLICATION_MANAGER)
|
|
|
- else:
|
|
|
- if isinstance(tool_call_args, str):
|
|
|
- try:
|
|
|
- tool_call_args = json.loads(tool_call_args)
|
|
|
- except json.JSONDecodeError:
|
|
|
- pass
|
|
|
-
|
|
|
- # invoke tool
|
|
|
- tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
|
|
|
- tool=tool_instance,
|
|
|
- tool_parameters=tool_call_args,
|
|
|
- user_id=self.user_id,
|
|
|
- tenant_id=self.tenant_id,
|
|
|
- message=self.message,
|
|
|
- invoke_from=self.application_generate_entity.invoke_from,
|
|
|
- agent_tool_callback=self.agent_callback
|
|
|
- )
|
|
|
- # publish files
|
|
|
- for message_file, save_as in message_files:
|
|
|
- if save_as:
|
|
|
- self.variables_pool.set_file(tool_name=tool_call_name, value=message_file.id, name=save_as)
|
|
|
-
|
|
|
- # publish message file
|
|
|
- self.queue_manager.publish(QueueMessageFileEvent(
|
|
|
- message_file_id=message_file.id
|
|
|
- ), PublishFrom.APPLICATION_MANAGER)
|
|
|
- # add message file ids
|
|
|
- message_file_ids.append(message_file.id)
|
|
|
-
|
|
|
- # publish files
|
|
|
- for message_file, save_as in message_files:
|
|
|
- if save_as:
|
|
|
- self.variables_pool.set_file(tool_name=tool_call_name,
|
|
|
- value=message_file.id,
|
|
|
- name=save_as)
|
|
|
- self.queue_manager.publish(QueueMessageFileEvent(
|
|
|
- message_file_id=message_file.id
|
|
|
- ), PublishFrom.APPLICATION_MANAGER)
|
|
|
-
|
|
|
- message_file_ids = [message_file.id for message_file, _ in message_files]
|
|
|
-
|
|
|
- observation = tool_invoke_response
|
|
|
-
|
|
|
- # save scratchpad
|
|
|
- scratchpad.observation = observation
|
|
|
-
|
|
|
- # save agent thought
|
|
|
- self.save_agent_thought(
|
|
|
- agent_thought=agent_thought,
|
|
|
- tool_name=tool_call_name,
|
|
|
- tool_input={
|
|
|
- tool_call_name: tool_call_args
|
|
|
- },
|
|
|
- tool_invoke_meta={
|
|
|
- tool_call_name: tool_invoke_meta.to_dict()
|
|
|
- },
|
|
|
- thought=None,
|
|
|
- observation={
|
|
|
- tool_call_name: observation
|
|
|
- },
|
|
|
- answer=scratchpad.agent_response,
|
|
|
- messages_ids=message_file_ids,
|
|
|
- )
|
|
|
- self.queue_manager.publish(QueueAgentThoughtEvent(
|
|
|
- agent_thought_id=agent_thought.id
|
|
|
- ), PublishFrom.APPLICATION_MANAGER)
|
|
|
+ tool_invoke_response, tool_invoke_meta = self._handle_invoke_action(
|
|
|
+ action=scratchpad.action,
|
|
|
+ tool_instances=tool_instances,
|
|
|
+ message_file_ids=message_file_ids
|
|
|
+ )
|
|
|
+ scratchpad.observation = tool_invoke_response
|
|
|
+ scratchpad.agent_response = tool_invoke_response
|
|
|
+
|
|
|
+ self.save_agent_thought(
|
|
|
+ agent_thought=agent_thought,
|
|
|
+ tool_name=scratchpad.action.action_name,
|
|
|
+ tool_input={scratchpad.action.action_name: scratchpad.action.action_input},
|
|
|
+ thought=scratchpad.thought,
|
|
|
+ observation={scratchpad.action.action_name: tool_invoke_response},
|
|
|
+ tool_invoke_meta=tool_invoke_meta.to_dict(),
|
|
|
+ answer=scratchpad.agent_response,
|
|
|
+ messages_ids=message_file_ids,
|
|
|
+ llm_usage=usage_dict['usage']
|
|
|
+ )
|
|
|
+
|
|
|
+ self.queue_manager.publish(QueueAgentThoughtEvent(
|
|
|
+ agent_thought_id=agent_thought.id
|
|
|
+ ), PublishFrom.APPLICATION_MANAGER)
|
|
|
|
|
|
# update prompt tool message
|
|
|
- for prompt_tool in prompt_messages_tools:
|
|
|
+ for prompt_tool in self._prompt_messages_tools:
|
|
|
self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
|
|
|
|
|
|
iteration_step += 1
|
|
@@ -378,96 +272,63 @@ class CotAgentRunner(BaseAgentRunner):
|
|
|
system_fingerprint=''
|
|
|
)), PublishFrom.APPLICATION_MANAGER)
|
|
|
|
|
|
- def _handle_stream_react(self, llm_response: Generator[LLMResultChunk, None, None], usage: dict) \
|
|
|
- -> Generator[Union[str, dict], None, None]:
|
|
|
- def parse_json(json_str):
|
|
|
+ def _handle_invoke_action(self, action: AgentScratchpadUnit.Action,
|
|
|
+ tool_instances: dict[str, Tool],
|
|
|
+ message_file_ids: list[str]) -> tuple[str, ToolInvokeMeta]:
|
|
|
+ """
|
|
|
+ handle invoke action
|
|
|
+ :param action: action
|
|
|
+ :param tool_instances: tool instances
|
|
|
+ :return: observation, meta
|
|
|
+ """
|
|
|
+ # action is tool call, invoke tool
|
|
|
+ tool_call_name = action.action_name
|
|
|
+ tool_call_args = action.action_input
|
|
|
+ tool_instance = tool_instances.get(tool_call_name)
|
|
|
+
|
|
|
+ if not tool_instance:
|
|
|
+ answer = f"there is not a tool named {tool_call_name}"
|
|
|
+ return answer, ToolInvokeMeta.error_instance(answer)
|
|
|
+
|
|
|
+ if isinstance(tool_call_args, str):
|
|
|
try:
|
|
|
- return json.loads(json_str.strip())
|
|
|
- except:
|
|
|
- return json_str
|
|
|
-
|
|
|
- def extra_json_from_code_block(code_block) -> Generator[Union[dict, str], None, None]:
|
|
|
- code_blocks = re.findall(r'```(.*?)```', code_block, re.DOTALL)
|
|
|
- if not code_blocks:
|
|
|
- return
|
|
|
- for block in code_blocks:
|
|
|
- json_text = re.sub(r'^[a-zA-Z]+\n', '', block.strip(), flags=re.MULTILINE)
|
|
|
- yield parse_json(json_text)
|
|
|
-
|
|
|
- code_block_cache = ''
|
|
|
- code_block_delimiter_count = 0
|
|
|
- in_code_block = False
|
|
|
- json_cache = ''
|
|
|
- json_quote_count = 0
|
|
|
- in_json = False
|
|
|
- got_json = False
|
|
|
-
|
|
|
- for response in llm_response:
|
|
|
- response = response.delta.message.content
|
|
|
- if not isinstance(response, str):
|
|
|
- continue
|
|
|
+ tool_call_args = json.loads(tool_call_args)
|
|
|
+ except json.JSONDecodeError:
|
|
|
+ pass
|
|
|
+
|
|
|
+ # invoke tool
|
|
|
+ tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
|
|
|
+ tool=tool_instance,
|
|
|
+ tool_parameters=tool_call_args,
|
|
|
+ user_id=self.user_id,
|
|
|
+ tenant_id=self.tenant_id,
|
|
|
+ message=self.message,
|
|
|
+ invoke_from=self.application_generate_entity.invoke_from,
|
|
|
+ agent_tool_callback=self.agent_callback
|
|
|
+ )
|
|
|
|
|
|
- # stream
|
|
|
- index = 0
|
|
|
- while index < len(response):
|
|
|
- steps = 1
|
|
|
- delta = response[index:index+steps]
|
|
|
- if delta == '`':
|
|
|
- code_block_cache += delta
|
|
|
- code_block_delimiter_count += 1
|
|
|
- else:
|
|
|
- if not in_code_block:
|
|
|
- if code_block_delimiter_count > 0:
|
|
|
- yield code_block_cache
|
|
|
- code_block_cache = ''
|
|
|
- else:
|
|
|
- code_block_cache += delta
|
|
|
- code_block_delimiter_count = 0
|
|
|
-
|
|
|
- if code_block_delimiter_count == 3:
|
|
|
- if in_code_block:
|
|
|
- yield from extra_json_from_code_block(code_block_cache)
|
|
|
- code_block_cache = ''
|
|
|
-
|
|
|
- in_code_block = not in_code_block
|
|
|
- code_block_delimiter_count = 0
|
|
|
-
|
|
|
- if not in_code_block:
|
|
|
- # handle single json
|
|
|
- if delta == '{':
|
|
|
- json_quote_count += 1
|
|
|
- in_json = True
|
|
|
- json_cache += delta
|
|
|
- elif delta == '}':
|
|
|
- json_cache += delta
|
|
|
- if json_quote_count > 0:
|
|
|
- json_quote_count -= 1
|
|
|
- if json_quote_count == 0:
|
|
|
- in_json = False
|
|
|
- got_json = True
|
|
|
- index += steps
|
|
|
- continue
|
|
|
- else:
|
|
|
- if in_json:
|
|
|
- json_cache += delta
|
|
|
-
|
|
|
- if got_json:
|
|
|
- got_json = False
|
|
|
- yield parse_json(json_cache)
|
|
|
- json_cache = ''
|
|
|
- json_quote_count = 0
|
|
|
- in_json = False
|
|
|
-
|
|
|
- if not in_code_block and not in_json:
|
|
|
- yield delta.replace('`', '')
|
|
|
-
|
|
|
- index += steps
|
|
|
-
|
|
|
- if code_block_cache:
|
|
|
- yield code_block_cache
|
|
|
-
|
|
|
- if json_cache:
|
|
|
- yield parse_json(json_cache)
|
|
|
+ # publish files
|
|
|
+ for message_file, save_as in message_files:
|
|
|
+ if save_as:
|
|
|
+ self.variables_pool.set_file(tool_name=tool_call_name, value=message_file.id, name=save_as)
|
|
|
+
|
|
|
+ # publish message file
|
|
|
+ self.queue_manager.publish(QueueMessageFileEvent(
|
|
|
+ message_file_id=message_file.id
|
|
|
+ ), PublishFrom.APPLICATION_MANAGER)
|
|
|
+ # add message file ids
|
|
|
+ message_file_ids.append(message_file.id)
|
|
|
+
|
|
|
+ return tool_invoke_response, tool_invoke_meta
|
|
|
+
|
|
|
+ def _convert_dict_to_action(self, action: dict) -> AgentScratchpadUnit.Action:
|
|
|
+ """
|
|
|
+ convert dict to action
|
|
|
+ """
|
|
|
+ return AgentScratchpadUnit.Action(
|
|
|
+ action_name=action['action'],
|
|
|
+ action_input=action['action_input']
|
|
|
+ )
|
|
|
|
|
|
def _fill_in_inputs_from_external_data_tools(self, instruction: str, inputs: dict) -> str:
|
|
|
"""
|
|
@@ -481,15 +342,46 @@ class CotAgentRunner(BaseAgentRunner):
|
|
|
|
|
|
return instruction
|
|
|
|
|
|
- def _init_agent_scratchpad(self,
|
|
|
- agent_scratchpad: list[AgentScratchpadUnit],
|
|
|
- messages: list[PromptMessage]
|
|
|
- ) -> list[AgentScratchpadUnit]:
|
|
|
+ def _init_react_state(self, query) -> None:
|
|
|
"""
|
|
|
init agent scratchpad
|
|
|
"""
|
|
|
+ self._query = query
|
|
|
+ self._agent_scratchpad = []
|
|
|
+ self._historic_prompt_messages = self._organize_historic_prompt_messages()
|
|
|
+
|
|
|
+ @abstractmethod
|
|
|
+ def _organize_prompt_messages(self) -> list[PromptMessage]:
|
|
|
+ """
|
|
|
+ organize prompt messages
|
|
|
+ """
|
|
|
+
|
|
|
+ def _format_assistant_message(self, agent_scratchpad: list[AgentScratchpadUnit]) -> str:
|
|
|
+ """
|
|
|
+ format assistant message
|
|
|
+ """
|
|
|
+ message = ''
|
|
|
+ for scratchpad in agent_scratchpad:
|
|
|
+ if scratchpad.is_final():
|
|
|
+ message += f"Final Answer: {scratchpad.agent_response}"
|
|
|
+ else:
|
|
|
+ message += f"Thought: {scratchpad.thought}\n\n"
|
|
|
+ if scratchpad.action_str:
|
|
|
+ message += f"Action: {scratchpad.action_str}\n\n"
|
|
|
+ if scratchpad.observation:
|
|
|
+ message += f"Observation: {scratchpad.observation}\n\n"
|
|
|
+
|
|
|
+ return message
|
|
|
+
|
|
|
+ def _organize_historic_prompt_messages(self) -> list[PromptMessage]:
|
|
|
+ """
|
|
|
+ organize historic prompt messages
|
|
|
+ """
|
|
|
+ result: list[PromptMessage] = []
|
|
|
+ scratchpad: list[AgentScratchpadUnit] = []
|
|
|
current_scratchpad: AgentScratchpadUnit = None
|
|
|
- for message in messages:
|
|
|
+
|
|
|
+ for message in self.history_prompt_messages:
|
|
|
if isinstance(message, AssistantPromptMessage):
|
|
|
current_scratchpad = AgentScratchpadUnit(
|
|
|
agent_response=message.content,
|
|
@@ -504,186 +396,29 @@ class CotAgentRunner(BaseAgentRunner):
|
|
|
action_name=message.tool_calls[0].function.name,
|
|
|
action_input=json.loads(message.tool_calls[0].function.arguments)
|
|
|
)
|
|
|
+ current_scratchpad.action_str = json.dumps(
|
|
|
+ current_scratchpad.action.to_dict()
|
|
|
+ )
|
|
|
except:
|
|
|
pass
|
|
|
-
|
|
|
- agent_scratchpad.append(current_scratchpad)
|
|
|
+
|
|
|
+ scratchpad.append(current_scratchpad)
|
|
|
elif isinstance(message, ToolPromptMessage):
|
|
|
if current_scratchpad:
|
|
|
current_scratchpad.observation = message.content
|
|
|
-
|
|
|
- return agent_scratchpad
|
|
|
+ elif isinstance(message, UserPromptMessage):
|
|
|
+ result.append(message)
|
|
|
|
|
|
- def _check_cot_prompt_messages(self, mode: Literal["completion", "chat"],
|
|
|
- agent_prompt_message: AgentPromptEntity,
|
|
|
- ):
|
|
|
- """
|
|
|
- check chain of thought prompt messages, a standard prompt message is like:
|
|
|
- Respond to the human as helpfully and accurately as possible.
|
|
|
-
|
|
|
- {{instruction}}
|
|
|
-
|
|
|
- You have access to the following tools:
|
|
|
+ if scratchpad:
|
|
|
+ result.append(AssistantPromptMessage(
|
|
|
+ content=self._format_assistant_message(scratchpad)
|
|
|
+ ))
|
|
|
|
|
|
- {{tools}}
|
|
|
+ scratchpad = []
|
|
|
|
|
|
- Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
|
|
|
- Valid action values: "Final Answer" or {{tool_names}}
|
|
|
-
|
|
|
- Provide only ONE action per $JSON_BLOB, as shown:
|
|
|
-
|
|
|
- ```
|
|
|
- {
|
|
|
- "action": $TOOL_NAME,
|
|
|
- "action_input": $ACTION_INPUT
|
|
|
- }
|
|
|
- ```
|
|
|
- """
|
|
|
-
|
|
|
- # parse agent prompt message
|
|
|
- first_prompt = agent_prompt_message.first_prompt
|
|
|
- next_iteration = agent_prompt_message.next_iteration
|
|
|
-
|
|
|
- if not isinstance(first_prompt, str) or not isinstance(next_iteration, str):
|
|
|
- raise ValueError("first_prompt or next_iteration is required in CoT agent mode")
|
|
|
-
|
|
|
- # check instruction, tools, and tool_names slots
|
|
|
- if not first_prompt.find("{{instruction}}") >= 0:
|
|
|
- raise ValueError("{{instruction}} is required in first_prompt")
|
|
|
- if not first_prompt.find("{{tools}}") >= 0:
|
|
|
- raise ValueError("{{tools}} is required in first_prompt")
|
|
|
- if not first_prompt.find("{{tool_names}}") >= 0:
|
|
|
- raise ValueError("{{tool_names}} is required in first_prompt")
|
|
|
+ if scratchpad:
|
|
|
+ result.append(AssistantPromptMessage(
|
|
|
+ content=self._format_assistant_message(scratchpad)
|
|
|
+ ))
|
|
|
|
|
|
- if mode == "completion":
|
|
|
- if not first_prompt.find("{{query}}") >= 0:
|
|
|
- raise ValueError("{{query}} is required in first_prompt")
|
|
|
- if not first_prompt.find("{{agent_scratchpad}}") >= 0:
|
|
|
- raise ValueError("{{agent_scratchpad}} is required in first_prompt")
|
|
|
-
|
|
|
- if mode == "completion":
|
|
|
- if not next_iteration.find("{{observation}}") >= 0:
|
|
|
- raise ValueError("{{observation}} is required in next_iteration")
|
|
|
-
|
|
|
- def _convert_scratchpad_list_to_str(self, agent_scratchpad: list[AgentScratchpadUnit]) -> str:
|
|
|
- """
|
|
|
- convert agent scratchpad list to str
|
|
|
- """
|
|
|
- next_iteration = self.app_config.agent.prompt.next_iteration
|
|
|
-
|
|
|
- result = ''
|
|
|
- for scratchpad in agent_scratchpad:
|
|
|
- result += (scratchpad.thought or '') + (scratchpad.action_str or '') + \
|
|
|
- next_iteration.replace("{{observation}}", scratchpad.observation or 'It seems that no response is available')
|
|
|
-
|
|
|
- return result
|
|
|
-
|
|
|
- def _organize_cot_prompt_messages(self, mode: Literal["completion", "chat"],
|
|
|
- prompt_messages: list[PromptMessage],
|
|
|
- tools: list[PromptMessageTool],
|
|
|
- agent_scratchpad: list[AgentScratchpadUnit],
|
|
|
- agent_prompt_message: AgentPromptEntity,
|
|
|
- instruction: str,
|
|
|
- input: str,
|
|
|
- ) -> list[PromptMessage]:
|
|
|
- """
|
|
|
- organize chain of thought prompt messages, a standard prompt message is like:
|
|
|
- Respond to the human as helpfully and accurately as possible.
|
|
|
-
|
|
|
- {{instruction}}
|
|
|
-
|
|
|
- You have access to the following tools:
|
|
|
-
|
|
|
- {{tools}}
|
|
|
-
|
|
|
- Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
|
|
|
- Valid action values: "Final Answer" or {{tool_names}}
|
|
|
-
|
|
|
- Provide only ONE action per $JSON_BLOB, as shown:
|
|
|
-
|
|
|
- ```
|
|
|
- {{{{
|
|
|
- "action": $TOOL_NAME,
|
|
|
- "action_input": $ACTION_INPUT
|
|
|
- }}}}
|
|
|
- ```
|
|
|
- """
|
|
|
-
|
|
|
- self._check_cot_prompt_messages(mode, agent_prompt_message)
|
|
|
-
|
|
|
- # parse agent prompt message
|
|
|
- first_prompt = agent_prompt_message.first_prompt
|
|
|
-
|
|
|
- # parse tools
|
|
|
- tools_str = self._jsonify_tool_prompt_messages(tools)
|
|
|
-
|
|
|
- # parse tools name
|
|
|
- tool_names = '"' + '","'.join([tool.name for tool in tools]) + '"'
|
|
|
-
|
|
|
- # get system message
|
|
|
- system_message = first_prompt.replace("{{instruction}}", instruction) \
|
|
|
- .replace("{{tools}}", tools_str) \
|
|
|
- .replace("{{tool_names}}", tool_names)
|
|
|
-
|
|
|
- # organize prompt messages
|
|
|
- if mode == "chat":
|
|
|
- # override system message
|
|
|
- overridden = False
|
|
|
- prompt_messages = prompt_messages.copy()
|
|
|
- for prompt_message in prompt_messages:
|
|
|
- if isinstance(prompt_message, SystemPromptMessage):
|
|
|
- prompt_message.content = system_message
|
|
|
- overridden = True
|
|
|
- break
|
|
|
-
|
|
|
- # convert tool prompt messages to user prompt messages
|
|
|
- for idx, prompt_message in enumerate(prompt_messages):
|
|
|
- if isinstance(prompt_message, ToolPromptMessage):
|
|
|
- prompt_messages[idx] = UserPromptMessage(
|
|
|
- content=prompt_message.content
|
|
|
- )
|
|
|
-
|
|
|
- if not overridden:
|
|
|
- prompt_messages.insert(0, SystemPromptMessage(
|
|
|
- content=system_message,
|
|
|
- ))
|
|
|
-
|
|
|
- # add assistant message
|
|
|
- if len(agent_scratchpad) > 0 and not self._is_first_iteration:
|
|
|
- prompt_messages.append(AssistantPromptMessage(
|
|
|
- content=(agent_scratchpad[-1].thought or '') + (agent_scratchpad[-1].action_str or ''),
|
|
|
- ))
|
|
|
-
|
|
|
- # add user message
|
|
|
- if len(agent_scratchpad) > 0 and not self._is_first_iteration:
|
|
|
- prompt_messages.append(UserPromptMessage(
|
|
|
- content=(agent_scratchpad[-1].observation or 'It seems that no response is available'),
|
|
|
- ))
|
|
|
-
|
|
|
- self._is_first_iteration = False
|
|
|
-
|
|
|
- return prompt_messages
|
|
|
- elif mode == "completion":
|
|
|
- # parse agent scratchpad
|
|
|
- agent_scratchpad_str = self._convert_scratchpad_list_to_str(agent_scratchpad)
|
|
|
- self._is_first_iteration = False
|
|
|
- # parse prompt messages
|
|
|
- return [UserPromptMessage(
|
|
|
- content=first_prompt.replace("{{instruction}}", instruction)
|
|
|
- .replace("{{tools}}", tools_str)
|
|
|
- .replace("{{tool_names}}", tool_names)
|
|
|
- .replace("{{query}}", input)
|
|
|
- .replace("{{agent_scratchpad}}", agent_scratchpad_str),
|
|
|
- )]
|
|
|
- else:
|
|
|
- raise ValueError(f"mode {mode} is not supported")
|
|
|
-
|
|
|
- def _jsonify_tool_prompt_messages(self, tools: list[PromptMessageTool]) -> str:
|
|
|
- """
|
|
|
- jsonify tool prompt messages
|
|
|
- """
|
|
|
- tools = jsonable_encoder(tools)
|
|
|
- try:
|
|
|
- return json.dumps(tools, ensure_ascii=False)
|
|
|
- except json.JSONDecodeError:
|
|
|
- return json.dumps(tools)
|
|
|
+ return result
|