|
@@ -12,6 +12,7 @@ from core.prompt.advanced_prompt_transform import AdvancedPromptTransform
|
|
|
from core.prompt.entities.advanced_prompt_entities import ChatModelMessage, CompletionModelPromptTemplate
|
|
|
from core.prompt.simple_prompt_transform import ModelMode
|
|
|
from core.prompt.utils.prompt_message_util import PromptMessageUtil
|
|
|
+from core.prompt.utils.prompt_template_parser import PromptTemplateParser
|
|
|
from core.workflow.entities.base_node_data_entities import BaseNodeData
|
|
|
from core.workflow.entities.node_entities import NodeRunMetadataKey, NodeRunResult, NodeType
|
|
|
from core.workflow.entities.variable_pool import VariablePool
|
|
@@ -26,6 +27,7 @@ from core.workflow.nodes.question_classifier.template_prompts import (
|
|
|
QUESTION_CLASSIFIER_USER_PROMPT_2,
|
|
|
QUESTION_CLASSIFIER_USER_PROMPT_3,
|
|
|
)
|
|
|
+from core.workflow.utils.variable_template_parser import VariableTemplateParser
|
|
|
from libs.json_in_md_parser import parse_and_check_json_markdown
|
|
|
from models.workflow import WorkflowNodeExecutionStatus
|
|
|
|
|
@@ -47,6 +49,9 @@ class QuestionClassifierNode(LLMNode):
|
|
|
model_instance, model_config = self._fetch_model_config(node_data.model)
|
|
|
# fetch memory
|
|
|
memory = self._fetch_memory(node_data.memory, variable_pool, model_instance)
|
|
|
+ # fetch instruction
|
|
|
+ instruction = self._format_instruction(node_data.instruction, variable_pool)
|
|
|
+ node_data.instruction = instruction
|
|
|
# fetch prompt messages
|
|
|
prompt_messages, stop = self._fetch_prompt(
|
|
|
node_data=node_data,
|
|
@@ -122,6 +127,12 @@ class QuestionClassifierNode(LLMNode):
|
|
|
node_data = node_data
|
|
|
node_data = cast(cls._node_data_cls, node_data)
|
|
|
variable_mapping = {'query': node_data.query_variable_selector}
|
|
|
+ variable_selectors = []
|
|
|
+ if node_data.instruction:
|
|
|
+ variable_template_parser = VariableTemplateParser(template=node_data.instruction)
|
|
|
+ variable_selectors.extend(variable_template_parser.extract_variable_selectors())
|
|
|
+ for variable_selector in variable_selectors:
|
|
|
+ variable_mapping[variable_selector.variable] = variable_selector.value_selector
|
|
|
return variable_mapping
|
|
|
|
|
|
@classmethod
|
|
@@ -269,8 +280,30 @@ class QuestionClassifierNode(LLMNode):
|
|
|
text=QUESTION_CLASSIFIER_COMPLETION_PROMPT.format(histories=memory_str,
|
|
|
input_text=input_text,
|
|
|
categories=json.dumps(categories),
|
|
|
- classification_instructions=instruction, ensure_ascii=False)
|
|
|
+ classification_instructions=instruction,
|
|
|
+ ensure_ascii=False)
|
|
|
)
|
|
|
|
|
|
else:
|
|
|
raise ValueError(f"Model mode {model_mode} not support.")
|
|
|
+
|
|
|
+ def _format_instruction(self, instruction: str, variable_pool: VariablePool) -> str:
|
|
|
+ inputs = {}
|
|
|
+
|
|
|
+ variable_selectors = []
|
|
|
+ variable_template_parser = VariableTemplateParser(template=instruction)
|
|
|
+ variable_selectors.extend(variable_template_parser.extract_variable_selectors())
|
|
|
+ for variable_selector in variable_selectors:
|
|
|
+ variable_value = variable_pool.get_variable_value(variable_selector.value_selector)
|
|
|
+ if variable_value is None:
|
|
|
+ raise ValueError(f'Variable {variable_selector.variable} not found')
|
|
|
+
|
|
|
+ inputs[variable_selector.variable] = variable_value
|
|
|
+
|
|
|
+ prompt_template = PromptTemplateParser(template=instruction, with_variable_tmpl=True)
|
|
|
+ prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
|
|
|
+
|
|
|
+ instruction = prompt_template.format(
|
|
|
+ prompt_inputs
|
|
|
+ )
|
|
|
+ return instruction
|