|
@@ -0,0 +1,204 @@
|
|
|
+import os
|
|
|
+from collections.abc import Generator
|
|
|
+
|
|
|
+import pytest
|
|
|
+
|
|
|
+from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
|
|
|
+from core.model_runtime.entities.message_entities import (
|
|
|
+ AssistantPromptMessage,
|
|
|
+ PromptMessageTool,
|
|
|
+ SystemPromptMessage,
|
|
|
+ UserPromptMessage,
|
|
|
+)
|
|
|
+from core.model_runtime.entities.model_entities import AIModelEntity
|
|
|
+from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
|
|
+from core.model_runtime.model_providers.x.llm.llm import XAILargeLanguageModel
|
|
|
+
|
|
|
+"""FOR MOCK FIXTURES, DO NOT REMOVE"""
|
|
|
+from tests.integration_tests.model_runtime.__mock.openai import setup_openai_mock
|
|
|
+
|
|
|
+
|
|
|
+def test_predefined_models():
|
|
|
+ model = XAILargeLanguageModel()
|
|
|
+ model_schemas = model.predefined_models()
|
|
|
+
|
|
|
+ assert len(model_schemas) >= 1
|
|
|
+ assert isinstance(model_schemas[0], AIModelEntity)
|
|
|
+
|
|
|
+
|
|
|
+@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)
|
|
|
+def test_validate_credentials_for_chat_model(setup_openai_mock):
|
|
|
+ model = XAILargeLanguageModel()
|
|
|
+
|
|
|
+ with pytest.raises(CredentialsValidateFailedError):
|
|
|
+ # model name to gpt-3.5-turbo because of mocking
|
|
|
+ model.validate_credentials(
|
|
|
+ model="gpt-3.5-turbo",
|
|
|
+ credentials={"api_key": "invalid_key", "endpoint_url": os.environ.get("XAI_API_BASE"), "mode": "chat"},
|
|
|
+ )
|
|
|
+
|
|
|
+ model.validate_credentials(
|
|
|
+ model="grok-beta",
|
|
|
+ credentials={
|
|
|
+ "api_key": os.environ.get("XAI_API_KEY"),
|
|
|
+ "endpoint_url": os.environ.get("XAI_API_BASE"),
|
|
|
+ "mode": "chat",
|
|
|
+ },
|
|
|
+ )
|
|
|
+
|
|
|
+
|
|
|
+@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)
|
|
|
+def test_invoke_chat_model(setup_openai_mock):
|
|
|
+ model = XAILargeLanguageModel()
|
|
|
+
|
|
|
+ result = model.invoke(
|
|
|
+ model="grok-beta",
|
|
|
+ credentials={
|
|
|
+ "api_key": os.environ.get("XAI_API_KEY"),
|
|
|
+ "endpoint_url": os.environ.get("XAI_API_BASE"),
|
|
|
+ "mode": "chat",
|
|
|
+ },
|
|
|
+ prompt_messages=[
|
|
|
+ SystemPromptMessage(
|
|
|
+ content="You are a helpful AI assistant.",
|
|
|
+ ),
|
|
|
+ UserPromptMessage(content="Hello World!"),
|
|
|
+ ],
|
|
|
+ model_parameters={
|
|
|
+ "temperature": 0.0,
|
|
|
+ "top_p": 1.0,
|
|
|
+ "presence_penalty": 0.0,
|
|
|
+ "frequency_penalty": 0.0,
|
|
|
+ "max_tokens": 10,
|
|
|
+ },
|
|
|
+ stop=["How"],
|
|
|
+ stream=False,
|
|
|
+ user="foo",
|
|
|
+ )
|
|
|
+
|
|
|
+ assert isinstance(result, LLMResult)
|
|
|
+ assert len(result.message.content) > 0
|
|
|
+
|
|
|
+
|
|
|
+@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)
|
|
|
+def test_invoke_chat_model_with_tools(setup_openai_mock):
|
|
|
+ model = XAILargeLanguageModel()
|
|
|
+
|
|
|
+ result = model.invoke(
|
|
|
+ model="grok-beta",
|
|
|
+ credentials={
|
|
|
+ "api_key": os.environ.get("XAI_API_KEY"),
|
|
|
+ "endpoint_url": os.environ.get("XAI_API_BASE"),
|
|
|
+ "mode": "chat",
|
|
|
+ },
|
|
|
+ prompt_messages=[
|
|
|
+ SystemPromptMessage(
|
|
|
+ content="You are a helpful AI assistant.",
|
|
|
+ ),
|
|
|
+ UserPromptMessage(
|
|
|
+ content="what's the weather today in London?",
|
|
|
+ ),
|
|
|
+ ],
|
|
|
+ model_parameters={"temperature": 0.0, "max_tokens": 100},
|
|
|
+ tools=[
|
|
|
+ PromptMessageTool(
|
|
|
+ name="get_weather",
|
|
|
+ description="Determine weather in my location",
|
|
|
+ parameters={
|
|
|
+ "type": "object",
|
|
|
+ "properties": {
|
|
|
+ "location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"},
|
|
|
+ "unit": {"type": "string", "enum": ["c", "f"]},
|
|
|
+ },
|
|
|
+ "required": ["location"],
|
|
|
+ },
|
|
|
+ ),
|
|
|
+ PromptMessageTool(
|
|
|
+ name="get_stock_price",
|
|
|
+ description="Get the current stock price",
|
|
|
+ parameters={
|
|
|
+ "type": "object",
|
|
|
+ "properties": {"symbol": {"type": "string", "description": "The stock symbol"}},
|
|
|
+ "required": ["symbol"],
|
|
|
+ },
|
|
|
+ ),
|
|
|
+ ],
|
|
|
+ stream=False,
|
|
|
+ user="foo",
|
|
|
+ )
|
|
|
+
|
|
|
+ assert isinstance(result, LLMResult)
|
|
|
+ assert isinstance(result.message, AssistantPromptMessage)
|
|
|
+
|
|
|
+
|
|
|
+@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)
|
|
|
+def test_invoke_stream_chat_model(setup_openai_mock):
|
|
|
+ model = XAILargeLanguageModel()
|
|
|
+
|
|
|
+ result = model.invoke(
|
|
|
+ model="grok-beta",
|
|
|
+ credentials={
|
|
|
+ "api_key": os.environ.get("XAI_API_KEY"),
|
|
|
+ "endpoint_url": os.environ.get("XAI_API_BASE"),
|
|
|
+ "mode": "chat",
|
|
|
+ },
|
|
|
+ prompt_messages=[
|
|
|
+ SystemPromptMessage(
|
|
|
+ content="You are a helpful AI assistant.",
|
|
|
+ ),
|
|
|
+ UserPromptMessage(content="Hello World!"),
|
|
|
+ ],
|
|
|
+ model_parameters={"temperature": 0.0, "max_tokens": 100},
|
|
|
+ stream=True,
|
|
|
+ user="foo",
|
|
|
+ )
|
|
|
+
|
|
|
+ assert isinstance(result, Generator)
|
|
|
+
|
|
|
+ for chunk in result:
|
|
|
+ assert isinstance(chunk, LLMResultChunk)
|
|
|
+ assert isinstance(chunk.delta, LLMResultChunkDelta)
|
|
|
+ assert isinstance(chunk.delta.message, AssistantPromptMessage)
|
|
|
+ assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True
|
|
|
+ if chunk.delta.finish_reason is not None:
|
|
|
+ assert chunk.delta.usage is not None
|
|
|
+ assert chunk.delta.usage.completion_tokens > 0
|
|
|
+
|
|
|
+
|
|
|
+def test_get_num_tokens():
|
|
|
+ model = XAILargeLanguageModel()
|
|
|
+
|
|
|
+ num_tokens = model.get_num_tokens(
|
|
|
+ model="grok-beta",
|
|
|
+ credentials={"api_key": os.environ.get("XAI_API_KEY"), "endpoint_url": os.environ.get("XAI_API_BASE")},
|
|
|
+ prompt_messages=[UserPromptMessage(content="Hello World!")],
|
|
|
+ )
|
|
|
+
|
|
|
+ assert num_tokens == 10
|
|
|
+
|
|
|
+ num_tokens = model.get_num_tokens(
|
|
|
+ model="grok-beta",
|
|
|
+ credentials={"api_key": os.environ.get("XAI_API_KEY"), "endpoint_url": os.environ.get("XAI_API_BASE")},
|
|
|
+ prompt_messages=[
|
|
|
+ SystemPromptMessage(
|
|
|
+ content="You are a helpful AI assistant.",
|
|
|
+ ),
|
|
|
+ UserPromptMessage(content="Hello World!"),
|
|
|
+ ],
|
|
|
+ tools=[
|
|
|
+ PromptMessageTool(
|
|
|
+ name="get_weather",
|
|
|
+ description="Determine weather in my location",
|
|
|
+ parameters={
|
|
|
+ "type": "object",
|
|
|
+ "properties": {
|
|
|
+ "location": {"type": "string", "description": "The city and state e.g. San Francisco, CA"},
|
|
|
+ "unit": {"type": "string", "enum": ["c", "f"]},
|
|
|
+ },
|
|
|
+ "required": ["location"],
|
|
|
+ },
|
|
|
+ ),
|
|
|
+ ],
|
|
|
+ )
|
|
|
+
|
|
|
+ assert num_tokens == 77
|