|
@@ -1,18 +1,17 @@
|
|
|
from collections.abc import Generator
|
|
|
from typing import Optional, Union
|
|
|
-from urllib.parse import urlparse
|
|
|
|
|
|
-import tiktoken
|
|
|
+from yarl import URL
|
|
|
|
|
|
-from core.model_runtime.entities.llm_entities import LLMResult
|
|
|
+from core.model_runtime.entities.llm_entities import LLMMode, LLMResult
|
|
|
from core.model_runtime.entities.message_entities import (
|
|
|
PromptMessage,
|
|
|
PromptMessageTool,
|
|
|
)
|
|
|
-from core.model_runtime.model_providers.openai.llm.llm import OpenAILargeLanguageModel
|
|
|
+from core.model_runtime.model_providers.openai_api_compatible.llm.llm import OAIAPICompatLargeLanguageModel
|
|
|
|
|
|
|
|
|
-class DeepSeekLargeLanguageModel(OpenAILargeLanguageModel):
|
|
|
+class DeepseekLargeLanguageModel(OAIAPICompatLargeLanguageModel):
|
|
|
def _invoke(
|
|
|
self,
|
|
|
model: str,
|
|
@@ -25,92 +24,15 @@ class DeepSeekLargeLanguageModel(OpenAILargeLanguageModel):
|
|
|
user: Optional[str] = None,
|
|
|
) -> Union[LLMResult, Generator]:
|
|
|
self._add_custom_parameters(credentials)
|
|
|
-
|
|
|
- return super()._invoke(model, credentials, prompt_messages, model_parameters, tools, stop, stream, user)
|
|
|
+ return super()._invoke(model, credentials, prompt_messages, model_parameters, tools, stop, stream)
|
|
|
|
|
|
def validate_credentials(self, model: str, credentials: dict) -> None:
|
|
|
self._add_custom_parameters(credentials)
|
|
|
super().validate_credentials(model, credentials)
|
|
|
|
|
|
- # refactored from openai model runtime, use cl100k_base for calculate token number
|
|
|
- def _num_tokens_from_string(self, model: str, text: str, tools: Optional[list[PromptMessageTool]] = None) -> int:
|
|
|
- """
|
|
|
- Calculate num tokens for text completion model with tiktoken package.
|
|
|
-
|
|
|
- :param model: model name
|
|
|
- :param text: prompt text
|
|
|
- :param tools: tools for tool calling
|
|
|
- :return: number of tokens
|
|
|
- """
|
|
|
- encoding = tiktoken.get_encoding("cl100k_base")
|
|
|
- num_tokens = len(encoding.encode(text))
|
|
|
-
|
|
|
- if tools:
|
|
|
- num_tokens += self._num_tokens_for_tools(encoding, tools)
|
|
|
-
|
|
|
- return num_tokens
|
|
|
-
|
|
|
- # refactored from openai model runtime, use cl100k_base for calculate token number
|
|
|
- def _num_tokens_from_messages(
|
|
|
- self, model: str, messages: list[PromptMessage], tools: Optional[list[PromptMessageTool]] = None
|
|
|
- ) -> int:
|
|
|
- """Calculate num tokens for gpt-3.5-turbo and gpt-4 with tiktoken package.
|
|
|
-
|
|
|
- Official documentation: https://github.com/openai/openai-cookbook/blob/
|
|
|
- main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb"""
|
|
|
- encoding = tiktoken.get_encoding("cl100k_base")
|
|
|
- tokens_per_message = 3
|
|
|
- tokens_per_name = 1
|
|
|
-
|
|
|
- num_tokens = 0
|
|
|
- messages_dict = [self._convert_prompt_message_to_dict(m) for m in messages]
|
|
|
- for message in messages_dict:
|
|
|
- num_tokens += tokens_per_message
|
|
|
- for key, value in message.items():
|
|
|
- # Cast str(value) in case the message value is not a string
|
|
|
- # This occurs with function messages
|
|
|
- # TODO: The current token calculation method for the image type is not implemented,
|
|
|
- # which need to download the image and then get the resolution for calculation,
|
|
|
- # and will increase the request delay
|
|
|
- if isinstance(value, list):
|
|
|
- text = ""
|
|
|
- for item in value:
|
|
|
- if isinstance(item, dict) and item["type"] == "text":
|
|
|
- text += item["text"]
|
|
|
-
|
|
|
- value = text
|
|
|
-
|
|
|
- if key == "tool_calls":
|
|
|
- for tool_call in value:
|
|
|
- for t_key, t_value in tool_call.items():
|
|
|
- num_tokens += len(encoding.encode(t_key))
|
|
|
- if t_key == "function":
|
|
|
- for f_key, f_value in t_value.items():
|
|
|
- num_tokens += len(encoding.encode(f_key))
|
|
|
- num_tokens += len(encoding.encode(f_value))
|
|
|
- else:
|
|
|
- num_tokens += len(encoding.encode(t_key))
|
|
|
- num_tokens += len(encoding.encode(t_value))
|
|
|
- else:
|
|
|
- num_tokens += len(encoding.encode(str(value)))
|
|
|
-
|
|
|
- if key == "name":
|
|
|
- num_tokens += tokens_per_name
|
|
|
-
|
|
|
- # every reply is primed with <im_start>assistant
|
|
|
- num_tokens += 3
|
|
|
-
|
|
|
- if tools:
|
|
|
- num_tokens += self._num_tokens_for_tools(encoding, tools)
|
|
|
-
|
|
|
- return num_tokens
|
|
|
-
|
|
|
@staticmethod
|
|
|
- def _add_custom_parameters(credentials: dict) -> None:
|
|
|
- credentials["mode"] = "chat"
|
|
|
- credentials["openai_api_key"] = credentials["api_key"]
|
|
|
- if "endpoint_url" not in credentials or credentials["endpoint_url"] == "":
|
|
|
- credentials["openai_api_base"] = "https://api.deepseek.com"
|
|
|
- else:
|
|
|
- parsed_url = urlparse(credentials["endpoint_url"])
|
|
|
- credentials["openai_api_base"] = f"{parsed_url.scheme}://{parsed_url.netloc}"
|
|
|
+ def _add_custom_parameters(credentials) -> None:
|
|
|
+ credentials["endpoint_url"] = str(URL(credentials.get("endpoint_url", "https://api.deepseek.com")))
|
|
|
+ credentials["mode"] = LLMMode.CHAT.value
|
|
|
+ credentials["function_calling_type"] = "tool_call"
|
|
|
+ credentials["stream_function_calling"] = "support"
|