|
@@ -1,11 +1,7 @@
|
|
|
import concurrent.futures
|
|
|
-from functools import reduce
|
|
|
-from io import BytesIO
|
|
|
from typing import Optional
|
|
|
|
|
|
-from flask import Response
|
|
|
from openai import OpenAI
|
|
|
-from pydub import AudioSegment
|
|
|
|
|
|
from core.model_runtime.errors.invoke import InvokeBadRequestError
|
|
|
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
|
@@ -32,7 +28,8 @@ class OpenAIText2SpeechModel(_CommonOpenAI, TTSModel):
|
|
|
:return: text translated to audio file
|
|
|
"""
|
|
|
|
|
|
- if not voice or voice not in [d['value'] for d in self.get_tts_model_voices(model=model, credentials=credentials)]:
|
|
|
+ if not voice or voice not in [d['value'] for d in
|
|
|
+ self.get_tts_model_voices(model=model, credentials=credentials)]:
|
|
|
voice = self._get_model_default_voice(model, credentials)
|
|
|
# if streaming:
|
|
|
return self._tts_invoke_streaming(model=model,
|
|
@@ -50,7 +47,7 @@ class OpenAIText2SpeechModel(_CommonOpenAI, TTSModel):
|
|
|
:return: text translated to audio file
|
|
|
"""
|
|
|
try:
|
|
|
- self._tts_invoke(
|
|
|
+ self._tts_invoke_streaming(
|
|
|
model=model,
|
|
|
credentials=credentials,
|
|
|
content_text='Hello Dify!',
|
|
@@ -59,46 +56,6 @@ class OpenAIText2SpeechModel(_CommonOpenAI, TTSModel):
|
|
|
except Exception as ex:
|
|
|
raise CredentialsValidateFailedError(str(ex))
|
|
|
|
|
|
- def _tts_invoke(self, model: str, credentials: dict, content_text: str, voice: str) -> Response:
|
|
|
- """
|
|
|
- _tts_invoke text2speech model
|
|
|
-
|
|
|
- :param model: model name
|
|
|
- :param credentials: model credentials
|
|
|
- :param content_text: text content to be translated
|
|
|
- :param voice: model timbre
|
|
|
- :return: text translated to audio file
|
|
|
- """
|
|
|
- audio_type = self._get_model_audio_type(model, credentials)
|
|
|
- word_limit = self._get_model_word_limit(model, credentials)
|
|
|
- max_workers = self._get_model_workers_limit(model, credentials)
|
|
|
- try:
|
|
|
- sentences = list(self._split_text_into_sentences(org_text=content_text, max_length=word_limit))
|
|
|
- audio_bytes_list = []
|
|
|
-
|
|
|
- # Create a thread pool and map the function to the list of sentences
|
|
|
- with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
|
|
|
- futures = [executor.submit(self._process_sentence, sentence=sentence, model=model, voice=voice,
|
|
|
- credentials=credentials) for sentence in sentences]
|
|
|
- for future in futures:
|
|
|
- try:
|
|
|
- if future.result():
|
|
|
- audio_bytes_list.append(future.result())
|
|
|
- except Exception as ex:
|
|
|
- raise InvokeBadRequestError(str(ex))
|
|
|
-
|
|
|
- if len(audio_bytes_list) > 0:
|
|
|
- audio_segments = [AudioSegment.from_file(BytesIO(audio_bytes), format=audio_type) for audio_bytes in
|
|
|
- audio_bytes_list if audio_bytes]
|
|
|
- combined_segment = reduce(lambda x, y: x + y, audio_segments)
|
|
|
- buffer: BytesIO = BytesIO()
|
|
|
- combined_segment.export(buffer, format=audio_type)
|
|
|
- buffer.seek(0)
|
|
|
- return Response(buffer.read(), status=200, mimetype=f"audio/{audio_type}")
|
|
|
- except Exception as ex:
|
|
|
- raise InvokeBadRequestError(str(ex))
|
|
|
-
|
|
|
-
|
|
|
def _tts_invoke_streaming(self, model: str, credentials: dict, content_text: str,
|
|
|
voice: str) -> any:
|
|
|
"""
|
|
@@ -114,7 +71,8 @@ class OpenAIText2SpeechModel(_CommonOpenAI, TTSModel):
|
|
|
# doc: https://platform.openai.com/docs/guides/text-to-speech
|
|
|
credentials_kwargs = self._to_credential_kwargs(credentials)
|
|
|
client = OpenAI(**credentials_kwargs)
|
|
|
- model_support_voice = [x.get("value") for x in self.get_tts_model_voices(model=model, credentials=credentials)]
|
|
|
+ model_support_voice = [x.get("value") for x in
|
|
|
+ self.get_tts_model_voices(model=model, credentials=credentials)]
|
|
|
if not voice or voice not in model_support_voice:
|
|
|
voice = self._get_model_default_voice(model, credentials)
|
|
|
word_limit = self._get_model_word_limit(model, credentials)
|