|
@@ -1,7 +1,9 @@
|
|
|
+import json
|
|
|
import logging
|
|
|
from collections.abc import Generator
|
|
|
from typing import Optional, Union
|
|
|
|
|
|
+import google.ai.generativelanguage as glm
|
|
|
import google.api_core.exceptions as exceptions
|
|
|
import google.generativeai as genai
|
|
|
import google.generativeai.client as client
|
|
@@ -13,9 +15,9 @@ from core.model_runtime.entities.message_entities import (
|
|
|
AssistantPromptMessage,
|
|
|
PromptMessage,
|
|
|
PromptMessageContentType,
|
|
|
- PromptMessageRole,
|
|
|
PromptMessageTool,
|
|
|
SystemPromptMessage,
|
|
|
+ ToolPromptMessage,
|
|
|
UserPromptMessage,
|
|
|
)
|
|
|
from core.model_runtime.errors.invoke import (
|
|
@@ -62,7 +64,7 @@ class GoogleLargeLanguageModel(LargeLanguageModel):
|
|
|
:return: full response or stream response chunk generator result
|
|
|
"""
|
|
|
# invoke model
|
|
|
- return self._generate(model, credentials, prompt_messages, model_parameters, stop, stream, user)
|
|
|
+ return self._generate(model, credentials, prompt_messages, model_parameters, tools, stop, stream, user)
|
|
|
|
|
|
def get_num_tokens(self, model: str, credentials: dict, prompt_messages: list[PromptMessage],
|
|
|
tools: Optional[list[PromptMessageTool]] = None) -> int:
|
|
@@ -94,6 +96,32 @@ class GoogleLargeLanguageModel(LargeLanguageModel):
|
|
|
)
|
|
|
|
|
|
return text.rstrip()
|
|
|
+
|
|
|
+ def _convert_tools_to_glm_tool(self, tools: list[PromptMessageTool]) -> glm.Tool:
|
|
|
+ """
|
|
|
+ Convert tool messages to glm tools
|
|
|
+
|
|
|
+ :param tools: tool messages
|
|
|
+ :return: glm tools
|
|
|
+ """
|
|
|
+ return glm.Tool(
|
|
|
+ function_declarations=[
|
|
|
+ glm.FunctionDeclaration(
|
|
|
+ name=tool.name,
|
|
|
+ parameters=glm.Schema(
|
|
|
+ type=glm.Type.OBJECT,
|
|
|
+ properties={
|
|
|
+ key: {
|
|
|
+ 'type_': value.get('type', 'string').upper(),
|
|
|
+ 'description': value.get('description', ''),
|
|
|
+ 'enum': value.get('enum', [])
|
|
|
+ } for key, value in tool.parameters.get('properties', {}).items()
|
|
|
+ },
|
|
|
+ required=tool.parameters.get('required', [])
|
|
|
+ ),
|
|
|
+ ) for tool in tools
|
|
|
+ ]
|
|
|
+ )
|
|
|
|
|
|
def validate_credentials(self, model: str, credentials: dict) -> None:
|
|
|
"""
|
|
@@ -105,7 +133,7 @@ class GoogleLargeLanguageModel(LargeLanguageModel):
|
|
|
"""
|
|
|
|
|
|
try:
|
|
|
- ping_message = PromptMessage(content="ping", role="system")
|
|
|
+ ping_message = SystemPromptMessage(content="ping")
|
|
|
self._generate(model, credentials, [ping_message], {"max_tokens_to_sample": 5})
|
|
|
|
|
|
except Exception as ex:
|
|
@@ -114,8 +142,9 @@ class GoogleLargeLanguageModel(LargeLanguageModel):
|
|
|
|
|
|
def _generate(self, model: str, credentials: dict,
|
|
|
prompt_messages: list[PromptMessage], model_parameters: dict,
|
|
|
- stop: Optional[list[str]] = None, stream: bool = True,
|
|
|
- user: Optional[str] = None) -> Union[LLMResult, Generator]:
|
|
|
+ tools: Optional[list[PromptMessageTool]] = None, stop: Optional[list[str]] = None,
|
|
|
+ stream: bool = True, user: Optional[str] = None
|
|
|
+ ) -> Union[LLMResult, Generator]:
|
|
|
"""
|
|
|
Invoke large language model
|
|
|
|
|
@@ -153,7 +182,6 @@ class GoogleLargeLanguageModel(LargeLanguageModel):
|
|
|
else:
|
|
|
history.append(content)
|
|
|
|
|
|
-
|
|
|
# Create a new ClientManager with tenant's API key
|
|
|
new_client_manager = client._ClientManager()
|
|
|
new_client_manager.configure(api_key=credentials["google_api_key"])
|
|
@@ -167,14 +195,15 @@ class GoogleLargeLanguageModel(LargeLanguageModel):
|
|
|
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE,
|
|
|
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE,
|
|
|
}
|
|
|
-
|
|
|
+
|
|
|
response = google_model.generate_content(
|
|
|
contents=history,
|
|
|
generation_config=genai.types.GenerationConfig(
|
|
|
**config_kwargs
|
|
|
),
|
|
|
stream=stream,
|
|
|
- safety_settings=safety_settings
|
|
|
+ safety_settings=safety_settings,
|
|
|
+ tools=self._convert_tools_to_glm_tool(tools) if tools else None,
|
|
|
)
|
|
|
|
|
|
if stream:
|
|
@@ -228,43 +257,61 @@ class GoogleLargeLanguageModel(LargeLanguageModel):
|
|
|
"""
|
|
|
index = -1
|
|
|
for chunk in response:
|
|
|
- content = chunk.text
|
|
|
- index += 1
|
|
|
-
|
|
|
- assistant_prompt_message = AssistantPromptMessage(
|
|
|
- content=content if content else '',
|
|
|
- )
|
|
|
-
|
|
|
- if not response._done:
|
|
|
-
|
|
|
- # transform assistant message to prompt message
|
|
|
- yield LLMResultChunk(
|
|
|
- model=model,
|
|
|
- prompt_messages=prompt_messages,
|
|
|
- delta=LLMResultChunkDelta(
|
|
|
- index=index,
|
|
|
- message=assistant_prompt_message
|
|
|
- )
|
|
|
+ for part in chunk.parts:
|
|
|
+ assistant_prompt_message = AssistantPromptMessage(
|
|
|
+ content=''
|
|
|
)
|
|
|
- else:
|
|
|
-
|
|
|
- # calculate num tokens
|
|
|
- prompt_tokens = self.get_num_tokens(model, credentials, prompt_messages)
|
|
|
- completion_tokens = self.get_num_tokens(model, credentials, [assistant_prompt_message])
|
|
|
-
|
|
|
- # transform usage
|
|
|
- usage = self._calc_response_usage(model, credentials, prompt_tokens, completion_tokens)
|
|
|
-
|
|
|
- yield LLMResultChunk(
|
|
|
- model=model,
|
|
|
- prompt_messages=prompt_messages,
|
|
|
- delta=LLMResultChunkDelta(
|
|
|
- index=index,
|
|
|
- message=assistant_prompt_message,
|
|
|
- finish_reason=chunk.candidates[0].finish_reason,
|
|
|
- usage=usage
|
|
|
+
|
|
|
+ if part.text:
|
|
|
+ assistant_prompt_message.content += part.text
|
|
|
+
|
|
|
+ if part.function_call:
|
|
|
+ assistant_prompt_message.tool_calls = [
|
|
|
+ AssistantPromptMessage.ToolCall(
|
|
|
+ id=part.function_call.name,
|
|
|
+ type='function',
|
|
|
+ function=AssistantPromptMessage.ToolCall.ToolCallFunction(
|
|
|
+ name=part.function_call.name,
|
|
|
+ arguments=json.dumps({
|
|
|
+ key: value
|
|
|
+ for key, value in part.function_call.args.items()
|
|
|
+ })
|
|
|
+ )
|
|
|
+ )
|
|
|
+ ]
|
|
|
+
|
|
|
+ index += 1
|
|
|
+
|
|
|
+ if not response._done:
|
|
|
+
|
|
|
+ # transform assistant message to prompt message
|
|
|
+ yield LLMResultChunk(
|
|
|
+ model=model,
|
|
|
+ prompt_messages=prompt_messages,
|
|
|
+ delta=LLMResultChunkDelta(
|
|
|
+ index=index,
|
|
|
+ message=assistant_prompt_message
|
|
|
+ )
|
|
|
+ )
|
|
|
+ else:
|
|
|
+
|
|
|
+ # calculate num tokens
|
|
|
+ prompt_tokens = self.get_num_tokens(model, credentials, prompt_messages)
|
|
|
+ completion_tokens = self.get_num_tokens(model, credentials, [assistant_prompt_message])
|
|
|
+
|
|
|
+ # transform usage
|
|
|
+ usage = self._calc_response_usage(model, credentials, prompt_tokens, completion_tokens)
|
|
|
+
|
|
|
+ yield LLMResultChunk(
|
|
|
+ model=model,
|
|
|
+ prompt_messages=prompt_messages,
|
|
|
+ delta=LLMResultChunkDelta(
|
|
|
+ index=index,
|
|
|
+ message=assistant_prompt_message,
|
|
|
+ finish_reason=chunk.candidates[0].finish_reason,
|
|
|
+ usage=usage
|
|
|
+ )
|
|
|
)
|
|
|
- )
|
|
|
|
|
|
def _convert_one_message_to_text(self, message: PromptMessage) -> str:
|
|
|
"""
|
|
@@ -288,6 +335,8 @@ class GoogleLargeLanguageModel(LargeLanguageModel):
|
|
|
message_text = f"{ai_prompt} {content}"
|
|
|
elif isinstance(message, SystemPromptMessage):
|
|
|
message_text = f"{human_prompt} {content}"
|
|
|
+ elif isinstance(message, ToolPromptMessage):
|
|
|
+ message_text = f"{human_prompt} {content}"
|
|
|
else:
|
|
|
raise ValueError(f"Got unknown type {message}")
|
|
|
|
|
@@ -300,26 +349,53 @@ class GoogleLargeLanguageModel(LargeLanguageModel):
|
|
|
:param message: one PromptMessage
|
|
|
:return: glm Content representation of message
|
|
|
"""
|
|
|
-
|
|
|
- parts = []
|
|
|
- if (isinstance(message.content, str)):
|
|
|
- parts.append(to_part(message.content))
|
|
|
+ if isinstance(message, UserPromptMessage):
|
|
|
+ glm_content = {
|
|
|
+ "role": "user",
|
|
|
+ "parts": []
|
|
|
+ }
|
|
|
+ if (isinstance(message.content, str)):
|
|
|
+ glm_content['parts'].append(to_part(message.content))
|
|
|
+ else:
|
|
|
+ for c in message.content:
|
|
|
+ if c.type == PromptMessageContentType.TEXT:
|
|
|
+ glm_content['parts'].append(to_part(c.data))
|
|
|
+ else:
|
|
|
+ metadata, data = c.data.split(',', 1)
|
|
|
+ mime_type = metadata.split(';', 1)[0].split(':')[1]
|
|
|
+ blob = {"inline_data":{"mime_type":mime_type,"data":data}}
|
|
|
+ glm_content['parts'].append(blob)
|
|
|
+ return glm_content
|
|
|
+ elif isinstance(message, AssistantPromptMessage):
|
|
|
+ glm_content = {
|
|
|
+ "role": "model",
|
|
|
+ "parts": []
|
|
|
+ }
|
|
|
+ if message.content:
|
|
|
+ glm_content['parts'].append(to_part(message.content))
|
|
|
+ if message.tool_calls:
|
|
|
+ glm_content["parts"].append(to_part(glm.FunctionCall(
|
|
|
+ name=message.tool_calls[0].function.name,
|
|
|
+ args=json.loads(message.tool_calls[0].function.arguments),
|
|
|
+ )))
|
|
|
+ return glm_content
|
|
|
+ elif isinstance(message, SystemPromptMessage):
|
|
|
+ return {
|
|
|
+ "role": "user",
|
|
|
+ "parts": [to_part(message.content)]
|
|
|
+ }
|
|
|
+ elif isinstance(message, ToolPromptMessage):
|
|
|
+ return {
|
|
|
+ "role": "function",
|
|
|
+ "parts": [glm.Part(function_response=glm.FunctionResponse(
|
|
|
+ name=message.name,
|
|
|
+ response={
|
|
|
+ "response": message.content
|
|
|
+ }
|
|
|
+ ))]
|
|
|
+ }
|
|
|
else:
|
|
|
- for c in message.content:
|
|
|
- if c.type == PromptMessageContentType.TEXT:
|
|
|
- parts.append(to_part(c.data))
|
|
|
- else:
|
|
|
- metadata, data = c.data.split(',', 1)
|
|
|
- mime_type = metadata.split(';', 1)[0].split(':')[1]
|
|
|
- blob = {"inline_data":{"mime_type":mime_type,"data":data}}
|
|
|
- parts.append(blob)
|
|
|
-
|
|
|
- glm_content = {
|
|
|
- "role": "user" if message.role in (PromptMessageRole.USER, PromptMessageRole.SYSTEM) else "model",
|
|
|
- "parts": parts
|
|
|
- }
|
|
|
-
|
|
|
- return glm_content
|
|
|
+ raise ValueError(f"Got unknown type {message}")
|
|
|
|
|
|
@property
|
|
|
def _invoke_error_mapping(self) -> dict[type[InvokeError], list[type[Exception]]]:
|