|
@@ -1,7 +1,7 @@
|
|
|
"""Abstract interface for document loader implementations."""
|
|
|
from typing import Optional
|
|
|
|
|
|
-from openpyxl.reader.excel import load_workbook
|
|
|
+import pandas as pd
|
|
|
|
|
|
from core.rag.extractor.extractor_base import BaseExtractor
|
|
|
from core.rag.models.document import Document
|
|
@@ -27,24 +27,21 @@ class ExcelExtractor(BaseExtractor):
|
|
|
self._autodetect_encoding = autodetect_encoding
|
|
|
|
|
|
def extract(self) -> list[Document]:
|
|
|
- """Load from file path."""
|
|
|
+ """Load from file path using Pandas."""
|
|
|
data = []
|
|
|
- wb = load_workbook(filename=self._file_path, read_only=True)
|
|
|
- # loop over all sheets
|
|
|
- for sheet in wb:
|
|
|
- keys = []
|
|
|
- if 'A1:A1' == sheet.calculate_dimension():
|
|
|
- sheet.reset_dimensions()
|
|
|
- for row in sheet.iter_rows(values_only=True):
|
|
|
- if all(v is None for v in row):
|
|
|
- continue
|
|
|
- if keys == []:
|
|
|
- keys = list(map(str, row))
|
|
|
- else:
|
|
|
- row_dict = dict(zip(keys, list(map(str, row))))
|
|
|
- row_dict = {k: v for k, v in row_dict.items() if v}
|
|
|
- item = ''.join(f'{k}:{v};' for k, v in row_dict.items())
|
|
|
- document = Document(page_content=item, metadata={'source': self._file_path})
|
|
|
- data.append(document)
|
|
|
+
|
|
|
+ # 使用 Pandas 读取 Excel 文件的每个工作表
|
|
|
+ xls = pd.ExcelFile(self._file_path)
|
|
|
+ for sheet_name in xls.sheet_names:
|
|
|
+ df = pd.read_excel(xls, sheet_name=sheet_name)
|
|
|
+
|
|
|
+ # filter out rows with all NaN values
|
|
|
+ df.dropna(how='all', inplace=True)
|
|
|
+
|
|
|
+ # transform each row into a Document
|
|
|
+ for _, row in df.iterrows():
|
|
|
+ item = ';'.join(f'{k}:{v}' for k, v in row.items() if pd.notna(v))
|
|
|
+ document = Document(page_content=item, metadata={'source': self._file_path})
|
|
|
+ data.append(document)
|
|
|
|
|
|
return data
|