|
@@ -20,6 +20,7 @@ from core.ops.utils import measure_time
|
|
|
from core.rag.data_post_processor.data_post_processor import DataPostProcessor
|
|
|
from core.rag.datasource.keyword.jieba.jieba_keyword_table_handler import JiebaKeywordTableHandler
|
|
|
from core.rag.datasource.retrieval_service import RetrievalService
|
|
|
+from core.rag.entities.context_entities import DocumentContext
|
|
|
from core.rag.models.document import Document
|
|
|
from core.rag.retrieval.retrieval_methods import RetrievalMethod
|
|
|
from core.rag.retrieval.router.multi_dataset_function_call_router import FunctionCallMultiDatasetRouter
|
|
@@ -30,6 +31,7 @@ from core.tools.tool.dataset_retriever.dataset_retriever_tool import DatasetRetr
|
|
|
from extensions.ext_database import db
|
|
|
from models.dataset import Dataset, DatasetQuery, DocumentSegment
|
|
|
from models.dataset import Document as DatasetDocument
|
|
|
+from services.external_knowledge_service import ExternalDatasetService
|
|
|
|
|
|
default_retrieval_model = {
|
|
|
"search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
|
|
@@ -110,7 +112,7 @@ class DatasetRetrieval:
|
|
|
continue
|
|
|
|
|
|
# pass if dataset is not available
|
|
|
- if dataset and dataset.available_document_count == 0:
|
|
|
+ if dataset and dataset.available_document_count == 0 and dataset.provider != "external":
|
|
|
continue
|
|
|
|
|
|
available_datasets.append(dataset)
|
|
@@ -146,69 +148,93 @@ class DatasetRetrieval:
|
|
|
message_id,
|
|
|
)
|
|
|
|
|
|
- document_score_list = {}
|
|
|
- for item in all_documents:
|
|
|
- if item.metadata.get("score"):
|
|
|
- document_score_list[item.metadata["doc_id"]] = item.metadata["score"]
|
|
|
-
|
|
|
+ dify_documents = [item for item in all_documents if item.provider == "dify"]
|
|
|
+ external_documents = [item for item in all_documents if item.provider == "external"]
|
|
|
document_context_list = []
|
|
|
- index_node_ids = [document.metadata["doc_id"] for document in all_documents]
|
|
|
- segments = DocumentSegment.query.filter(
|
|
|
- DocumentSegment.dataset_id.in_(dataset_ids),
|
|
|
- DocumentSegment.completed_at.isnot(None),
|
|
|
- DocumentSegment.status == "completed",
|
|
|
- DocumentSegment.enabled == True,
|
|
|
- DocumentSegment.index_node_id.in_(index_node_ids),
|
|
|
- ).all()
|
|
|
-
|
|
|
- if segments:
|
|
|
- index_node_id_to_position = {id: position for position, id in enumerate(index_node_ids)}
|
|
|
- sorted_segments = sorted(
|
|
|
- segments, key=lambda segment: index_node_id_to_position.get(segment.index_node_id, float("inf"))
|
|
|
- )
|
|
|
- for segment in sorted_segments:
|
|
|
- if segment.answer:
|
|
|
- document_context_list.append(f"question:{segment.get_sign_content()} answer:{segment.answer}")
|
|
|
- else:
|
|
|
- document_context_list.append(segment.get_sign_content())
|
|
|
- if show_retrieve_source:
|
|
|
- context_list = []
|
|
|
- resource_number = 1
|
|
|
+ retrieval_resource_list = []
|
|
|
+ # deal with external documents
|
|
|
+ for item in external_documents:
|
|
|
+ document_context_list.append(DocumentContext(content=item.page_content, score=item.metadata.get("score")))
|
|
|
+ source = {
|
|
|
+ "dataset_id": item.metadata.get("dataset_id"),
|
|
|
+ "dataset_name": item.metadata.get("dataset_name"),
|
|
|
+ "document_name": item.metadata.get("title"),
|
|
|
+ "data_source_type": "external",
|
|
|
+ "retriever_from": invoke_from.to_source(),
|
|
|
+ "score": item.metadata.get("score"),
|
|
|
+ "content": item.page_content,
|
|
|
+ }
|
|
|
+ retrieval_resource_list.append(source)
|
|
|
+ document_score_list = {}
|
|
|
+ # deal with dify documents
|
|
|
+ if dify_documents:
|
|
|
+ for item in dify_documents:
|
|
|
+ if item.metadata.get("score"):
|
|
|
+ document_score_list[item.metadata["doc_id"]] = item.metadata["score"]
|
|
|
+
|
|
|
+ index_node_ids = [document.metadata["doc_id"] for document in dify_documents]
|
|
|
+ segments = DocumentSegment.query.filter(
|
|
|
+ DocumentSegment.dataset_id.in_(dataset_ids),
|
|
|
+ DocumentSegment.status == "completed",
|
|
|
+ DocumentSegment.enabled == True,
|
|
|
+ DocumentSegment.index_node_id.in_(index_node_ids),
|
|
|
+ ).all()
|
|
|
+
|
|
|
+ if segments:
|
|
|
+ index_node_id_to_position = {id: position for position, id in enumerate(index_node_ids)}
|
|
|
+ sorted_segments = sorted(
|
|
|
+ segments, key=lambda segment: index_node_id_to_position.get(segment.index_node_id, float("inf"))
|
|
|
+ )
|
|
|
for segment in sorted_segments:
|
|
|
- dataset = Dataset.query.filter_by(id=segment.dataset_id).first()
|
|
|
- document = DatasetDocument.query.filter(
|
|
|
- DatasetDocument.id == segment.document_id,
|
|
|
- DatasetDocument.enabled == True,
|
|
|
- DatasetDocument.archived == False,
|
|
|
- ).first()
|
|
|
- if dataset and document:
|
|
|
- source = {
|
|
|
- "position": resource_number,
|
|
|
- "dataset_id": dataset.id,
|
|
|
- "dataset_name": dataset.name,
|
|
|
- "document_id": document.id,
|
|
|
- "document_name": document.name,
|
|
|
- "data_source_type": document.data_source_type,
|
|
|
- "segment_id": segment.id,
|
|
|
- "retriever_from": invoke_from.to_source(),
|
|
|
- "score": document_score_list.get(segment.index_node_id, None),
|
|
|
- }
|
|
|
-
|
|
|
- if invoke_from.to_source() == "dev":
|
|
|
- source["hit_count"] = segment.hit_count
|
|
|
- source["word_count"] = segment.word_count
|
|
|
- source["segment_position"] = segment.position
|
|
|
- source["index_node_hash"] = segment.index_node_hash
|
|
|
- if segment.answer:
|
|
|
- source["content"] = f"question:{segment.content} \nanswer:{segment.answer}"
|
|
|
- else:
|
|
|
- source["content"] = segment.content
|
|
|
- context_list.append(source)
|
|
|
- resource_number += 1
|
|
|
- if hit_callback:
|
|
|
- hit_callback.return_retriever_resource_info(context_list)
|
|
|
-
|
|
|
- return str("\n".join(document_context_list))
|
|
|
+ if segment.answer:
|
|
|
+ document_context_list.append(
|
|
|
+ DocumentContext(
|
|
|
+ content=f"question:{segment.get_sign_content()} answer:{segment.answer}",
|
|
|
+ score=document_score_list.get(segment.index_node_id, None),
|
|
|
+ )
|
|
|
+ )
|
|
|
+ else:
|
|
|
+ document_context_list.append(
|
|
|
+ DocumentContext(
|
|
|
+ content=segment.get_sign_content(),
|
|
|
+ score=document_score_list.get(segment.index_node_id, None),
|
|
|
+ )
|
|
|
+ )
|
|
|
+ if show_retrieve_source:
|
|
|
+ for segment in sorted_segments:
|
|
|
+ dataset = Dataset.query.filter_by(id=segment.dataset_id).first()
|
|
|
+ document = DatasetDocument.query.filter(
|
|
|
+ DatasetDocument.id == segment.document_id,
|
|
|
+ DatasetDocument.enabled == True,
|
|
|
+ DatasetDocument.archived == False,
|
|
|
+ ).first()
|
|
|
+ if dataset and document:
|
|
|
+ source = {
|
|
|
+ "dataset_id": dataset.id,
|
|
|
+ "dataset_name": dataset.name,
|
|
|
+ "document_id": document.id,
|
|
|
+ "document_name": document.name,
|
|
|
+ "data_source_type": document.data_source_type,
|
|
|
+ "segment_id": segment.id,
|
|
|
+ "retriever_from": invoke_from.to_source(),
|
|
|
+ "score": document_score_list.get(segment.index_node_id, None),
|
|
|
+ }
|
|
|
+
|
|
|
+ if invoke_from.to_source() == "dev":
|
|
|
+ source["hit_count"] = segment.hit_count
|
|
|
+ source["word_count"] = segment.word_count
|
|
|
+ source["segment_position"] = segment.position
|
|
|
+ source["index_node_hash"] = segment.index_node_hash
|
|
|
+ if segment.answer:
|
|
|
+ source["content"] = f"question:{segment.content} \nanswer:{segment.answer}"
|
|
|
+ else:
|
|
|
+ source["content"] = segment.content
|
|
|
+ retrieval_resource_list.append(source)
|
|
|
+ if hit_callback and retrieval_resource_list:
|
|
|
+ hit_callback.return_retriever_resource_info(retrieval_resource_list)
|
|
|
+ if document_context_list:
|
|
|
+ document_context_list = sorted(document_context_list, key=lambda x: x.score, reverse=True)
|
|
|
+ return str("\n".join([document_context.content for document_context in document_context_list]))
|
|
|
return ""
|
|
|
|
|
|
def single_retrieve(
|
|
@@ -256,36 +282,58 @@ class DatasetRetrieval:
|
|
|
# get retrieval model config
|
|
|
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
|
|
|
if dataset:
|
|
|
- retrieval_model_config = dataset.retrieval_model or default_retrieval_model
|
|
|
-
|
|
|
- # get top k
|
|
|
- top_k = retrieval_model_config["top_k"]
|
|
|
- # get retrieval method
|
|
|
- if dataset.indexing_technique == "economy":
|
|
|
- retrieval_method = "keyword_search"
|
|
|
- else:
|
|
|
- retrieval_method = retrieval_model_config["search_method"]
|
|
|
- # get reranking model
|
|
|
- reranking_model = (
|
|
|
- retrieval_model_config["reranking_model"] if retrieval_model_config["reranking_enable"] else None
|
|
|
- )
|
|
|
- # get score threshold
|
|
|
- score_threshold = 0.0
|
|
|
- score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
|
|
|
- if score_threshold_enabled:
|
|
|
- score_threshold = retrieval_model_config.get("score_threshold")
|
|
|
-
|
|
|
- with measure_time() as timer:
|
|
|
- results = RetrievalService.retrieve(
|
|
|
- retrieval_method=retrieval_method,
|
|
|
- dataset_id=dataset.id,
|
|
|
+ results = []
|
|
|
+ if dataset.provider == "external":
|
|
|
+ external_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
|
|
|
+ tenant_id=dataset.tenant_id,
|
|
|
+ dataset_id=dataset_id,
|
|
|
query=query,
|
|
|
- top_k=top_k,
|
|
|
- score_threshold=score_threshold,
|
|
|
- reranking_model=reranking_model,
|
|
|
- reranking_mode=retrieval_model_config.get("reranking_mode", "reranking_model"),
|
|
|
- weights=retrieval_model_config.get("weights", None),
|
|
|
+ external_retrieval_parameters=dataset.retrieval_model,
|
|
|
+ )
|
|
|
+ for external_document in external_documents:
|
|
|
+ document = Document(
|
|
|
+ page_content=external_document.get("content"),
|
|
|
+ metadata=external_document.get("metadata"),
|
|
|
+ provider="external",
|
|
|
+ )
|
|
|
+ document.metadata["score"] = external_document.get("score")
|
|
|
+ document.metadata["title"] = external_document.get("title")
|
|
|
+ document.metadata["dataset_id"] = dataset_id
|
|
|
+ document.metadata["dataset_name"] = dataset.name
|
|
|
+ results.append(document)
|
|
|
+ else:
|
|
|
+ retrieval_model_config = dataset.retrieval_model or default_retrieval_model
|
|
|
+
|
|
|
+ # get top k
|
|
|
+ top_k = retrieval_model_config["top_k"]
|
|
|
+ # get retrieval method
|
|
|
+ if dataset.indexing_technique == "economy":
|
|
|
+ retrieval_method = "keyword_search"
|
|
|
+ else:
|
|
|
+ retrieval_method = retrieval_model_config["search_method"]
|
|
|
+ # get reranking model
|
|
|
+ reranking_model = (
|
|
|
+ retrieval_model_config["reranking_model"]
|
|
|
+ if retrieval_model_config["reranking_enable"]
|
|
|
+ else None
|
|
|
)
|
|
|
+ # get score threshold
|
|
|
+ score_threshold = 0.0
|
|
|
+ score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
|
|
|
+ if score_threshold_enabled:
|
|
|
+ score_threshold = retrieval_model_config.get("score_threshold")
|
|
|
+
|
|
|
+ with measure_time() as timer:
|
|
|
+ results = RetrievalService.retrieve(
|
|
|
+ retrieval_method=retrieval_method,
|
|
|
+ dataset_id=dataset.id,
|
|
|
+ query=query,
|
|
|
+ top_k=top_k,
|
|
|
+ score_threshold=score_threshold,
|
|
|
+ reranking_model=reranking_model,
|
|
|
+ reranking_mode=retrieval_model_config.get("reranking_mode", "reranking_model"),
|
|
|
+ weights=retrieval_model_config.get("weights", None),
|
|
|
+ )
|
|
|
self._on_query(query, [dataset_id], app_id, user_from, user_id)
|
|
|
|
|
|
if results:
|
|
@@ -356,7 +404,8 @@ class DatasetRetrieval:
|
|
|
self, documents: list[Document], message_id: Optional[str] = None, timer: Optional[dict] = None
|
|
|
) -> None:
|
|
|
"""Handle retrieval end."""
|
|
|
- for document in documents:
|
|
|
+ dify_documents = [document for document in documents if document.provider == "dify"]
|
|
|
+ for document in dify_documents:
|
|
|
query = db.session.query(DocumentSegment).filter(
|
|
|
DocumentSegment.index_node_id == document.metadata["doc_id"]
|
|
|
)
|
|
@@ -409,35 +458,54 @@ class DatasetRetrieval:
|
|
|
if not dataset:
|
|
|
return []
|
|
|
|
|
|
- # get retrieval model , if the model is not setting , using default
|
|
|
- retrieval_model = dataset.retrieval_model or default_retrieval_model
|
|
|
-
|
|
|
- if dataset.indexing_technique == "economy":
|
|
|
- # use keyword table query
|
|
|
- documents = RetrievalService.retrieve(
|
|
|
- retrieval_method="keyword_search", dataset_id=dataset.id, query=query, top_k=top_k
|
|
|
+ if dataset.provider == "external":
|
|
|
+ external_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
|
|
|
+ tenant_id=dataset.tenant_id,
|
|
|
+ dataset_id=dataset_id,
|
|
|
+ query=query,
|
|
|
+ external_retrieval_parameters=dataset.retrieval_model,
|
|
|
)
|
|
|
- if documents:
|
|
|
- all_documents.extend(documents)
|
|
|
+ for external_document in external_documents:
|
|
|
+ document = Document(
|
|
|
+ page_content=external_document.get("content"),
|
|
|
+ metadata=external_document.get("metadata"),
|
|
|
+ provider="external",
|
|
|
+ )
|
|
|
+ document.metadata["score"] = external_document.get("score")
|
|
|
+ document.metadata["title"] = external_document.get("title")
|
|
|
+ document.metadata["dataset_id"] = dataset_id
|
|
|
+ document.metadata["dataset_name"] = dataset.name
|
|
|
+ all_documents.append(document)
|
|
|
else:
|
|
|
- if top_k > 0:
|
|
|
- # retrieval source
|
|
|
+ # get retrieval model , if the model is not setting , using default
|
|
|
+ retrieval_model = dataset.retrieval_model or default_retrieval_model
|
|
|
+
|
|
|
+ if dataset.indexing_technique == "economy":
|
|
|
+ # use keyword table query
|
|
|
documents = RetrievalService.retrieve(
|
|
|
- retrieval_method=retrieval_model["search_method"],
|
|
|
- dataset_id=dataset.id,
|
|
|
- query=query,
|
|
|
- top_k=retrieval_model.get("top_k") or 2,
|
|
|
- score_threshold=retrieval_model.get("score_threshold", 0.0)
|
|
|
- if retrieval_model["score_threshold_enabled"]
|
|
|
- else 0.0,
|
|
|
- reranking_model=retrieval_model.get("reranking_model", None)
|
|
|
- if retrieval_model["reranking_enable"]
|
|
|
- else None,
|
|
|
- reranking_mode=retrieval_model.get("reranking_mode") or "reranking_model",
|
|
|
- weights=retrieval_model.get("weights", None),
|
|
|
+ retrieval_method="keyword_search", dataset_id=dataset.id, query=query, top_k=top_k
|
|
|
)
|
|
|
-
|
|
|
- all_documents.extend(documents)
|
|
|
+ if documents:
|
|
|
+ all_documents.extend(documents)
|
|
|
+ else:
|
|
|
+ if top_k > 0:
|
|
|
+ # retrieval source
|
|
|
+ documents = RetrievalService.retrieve(
|
|
|
+ retrieval_method=retrieval_model["search_method"],
|
|
|
+ dataset_id=dataset.id,
|
|
|
+ query=query,
|
|
|
+ top_k=retrieval_model.get("top_k") or 2,
|
|
|
+ score_threshold=retrieval_model.get("score_threshold", 0.0)
|
|
|
+ if retrieval_model["score_threshold_enabled"]
|
|
|
+ else 0.0,
|
|
|
+ reranking_model=retrieval_model.get("reranking_model", None)
|
|
|
+ if retrieval_model["reranking_enable"]
|
|
|
+ else None,
|
|
|
+ reranking_mode=retrieval_model.get("reranking_mode") or "reranking_model",
|
|
|
+ weights=retrieval_model.get("weights", None),
|
|
|
+ )
|
|
|
+
|
|
|
+ all_documents.extend(documents)
|
|
|
|
|
|
def to_dataset_retriever_tool(
|
|
|
self,
|