|
@@ -17,7 +17,6 @@ from botocore.exceptions import (
|
|
|
ServiceNotInRegionError,
|
|
|
UnknownServiceError,
|
|
|
)
|
|
|
-from cohere import ChatMessage
|
|
|
|
|
|
# local import
|
|
|
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
|
|
@@ -42,7 +41,6 @@ from core.model_runtime.errors.invoke import (
|
|
|
)
|
|
|
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
|
|
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
|
|
-from core.model_runtime.model_providers.cohere.llm.llm import CohereLargeLanguageModel
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
@@ -59,6 +57,7 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
|
|
|
{'prefix': 'mistral.mixtral-8x7b-instruct', 'support_system_prompts': False, 'support_tool_use': False},
|
|
|
{'prefix': 'mistral.mistral-large', 'support_system_prompts': True, 'support_tool_use': True},
|
|
|
{'prefix': 'mistral.mistral-small', 'support_system_prompts': True, 'support_tool_use': True},
|
|
|
+ {'prefix': 'cohere.command-r', 'support_system_prompts': True, 'support_tool_use': True},
|
|
|
{'prefix': 'amazon.titan', 'support_system_prompts': False, 'support_tool_use': False}
|
|
|
]
|
|
|
|
|
@@ -94,86 +93,8 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
|
|
|
model_info['model'] = model
|
|
|
# invoke models via boto3 converse API
|
|
|
return self._generate_with_converse(model_info, credentials, prompt_messages, model_parameters, stop, stream, user, tools)
|
|
|
- # invoke Cohere models via boto3 client
|
|
|
- if "cohere.command-r" in model:
|
|
|
- return self._generate_cohere_chat(model, credentials, prompt_messages, model_parameters, stop, stream, user, tools)
|
|
|
# invoke other models via boto3 client
|
|
|
return self._generate(model, credentials, prompt_messages, model_parameters, stop, stream, user)
|
|
|
-
|
|
|
- def _generate_cohere_chat(
|
|
|
- self, model: str, credentials: dict, prompt_messages: list[PromptMessage], model_parameters: dict,
|
|
|
- stop: Optional[list[str]] = None, stream: bool = True, user: Optional[str] = None,
|
|
|
- tools: Optional[list[PromptMessageTool]] = None,) -> Union[LLMResult, Generator]:
|
|
|
- cohere_llm = CohereLargeLanguageModel()
|
|
|
- client_config = Config(
|
|
|
- region_name=credentials["aws_region"]
|
|
|
- )
|
|
|
-
|
|
|
- runtime_client = boto3.client(
|
|
|
- service_name='bedrock-runtime',
|
|
|
- config=client_config,
|
|
|
- aws_access_key_id=credentials["aws_access_key_id"],
|
|
|
- aws_secret_access_key=credentials["aws_secret_access_key"]
|
|
|
- )
|
|
|
-
|
|
|
- extra_model_kwargs = {}
|
|
|
- if stop:
|
|
|
- extra_model_kwargs['stop_sequences'] = stop
|
|
|
-
|
|
|
- if tools:
|
|
|
- tools = cohere_llm._convert_tools(tools)
|
|
|
- model_parameters['tools'] = tools
|
|
|
-
|
|
|
- message, chat_histories, tool_results \
|
|
|
- = cohere_llm._convert_prompt_messages_to_message_and_chat_histories(prompt_messages)
|
|
|
-
|
|
|
- if tool_results:
|
|
|
- model_parameters['tool_results'] = tool_results
|
|
|
-
|
|
|
- payload = {
|
|
|
- **model_parameters,
|
|
|
- "message": message,
|
|
|
- "chat_history": chat_histories,
|
|
|
- }
|
|
|
-
|
|
|
- # need workaround for ai21 models which doesn't support streaming
|
|
|
- if stream:
|
|
|
- invoke = runtime_client.invoke_model_with_response_stream
|
|
|
- else:
|
|
|
- invoke = runtime_client.invoke_model
|
|
|
-
|
|
|
- def serialize(obj):
|
|
|
- if isinstance(obj, ChatMessage):
|
|
|
- return obj.__dict__
|
|
|
- raise TypeError(f"Type {type(obj)} not serializable")
|
|
|
-
|
|
|
- try:
|
|
|
- body_jsonstr=json.dumps(payload, default=serialize)
|
|
|
- response = invoke(
|
|
|
- modelId=model,
|
|
|
- contentType="application/json",
|
|
|
- accept="*/*",
|
|
|
- body=body_jsonstr
|
|
|
- )
|
|
|
- except ClientError as ex:
|
|
|
- error_code = ex.response['Error']['Code']
|
|
|
- full_error_msg = f"{error_code}: {ex.response['Error']['Message']}"
|
|
|
- raise self._map_client_to_invoke_error(error_code, full_error_msg)
|
|
|
-
|
|
|
- except (EndpointConnectionError, NoRegionError, ServiceNotInRegionError) as ex:
|
|
|
- raise InvokeConnectionError(str(ex))
|
|
|
-
|
|
|
- except UnknownServiceError as ex:
|
|
|
- raise InvokeServerUnavailableError(str(ex))
|
|
|
-
|
|
|
- except Exception as ex:
|
|
|
- raise InvokeError(str(ex))
|
|
|
-
|
|
|
- if stream:
|
|
|
- return self._handle_generate_stream_response(model, credentials, response, prompt_messages)
|
|
|
-
|
|
|
- return self._handle_generate_response(model, credentials, response, prompt_messages)
|
|
|
-
|
|
|
|
|
|
def _generate_with_converse(self, model_info: dict, credentials: dict, prompt_messages: list[PromptMessage], model_parameters: dict,
|
|
|
stop: Optional[list[str]] = None, stream: bool = True, user: Optional[str] = None, tools: Optional[list[PromptMessageTool]] = None,) -> Union[LLMResult, Generator]:
|
|
@@ -581,38 +502,9 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
|
|
|
:param message: PromptMessage to convert.
|
|
|
:return: String representation of the message.
|
|
|
"""
|
|
|
-
|
|
|
- if model_prefix == "anthropic":
|
|
|
- human_prompt_prefix = "\n\nHuman:"
|
|
|
- human_prompt_postfix = ""
|
|
|
- ai_prompt = "\n\nAssistant:"
|
|
|
-
|
|
|
- elif model_prefix == "meta":
|
|
|
- # LLAMA3
|
|
|
- if model_name.startswith("llama3"):
|
|
|
- human_prompt_prefix = "<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n"
|
|
|
- human_prompt_postfix = "<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
|
|
|
- ai_prompt = "\n\nAssistant:"
|
|
|
- else:
|
|
|
- # LLAMA2
|
|
|
- human_prompt_prefix = "\n[INST]"
|
|
|
- human_prompt_postfix = "[\\INST]\n"
|
|
|
- ai_prompt = ""
|
|
|
-
|
|
|
- elif model_prefix == "mistral":
|
|
|
- human_prompt_prefix = "<s>[INST]"
|
|
|
- human_prompt_postfix = "[\\INST]\n"
|
|
|
- ai_prompt = "\n\nAssistant:"
|
|
|
-
|
|
|
- elif model_prefix == "amazon":
|
|
|
- human_prompt_prefix = "\n\nUser:"
|
|
|
- human_prompt_postfix = ""
|
|
|
- ai_prompt = "\n\nBot:"
|
|
|
-
|
|
|
- else:
|
|
|
- human_prompt_prefix = ""
|
|
|
- human_prompt_postfix = ""
|
|
|
- ai_prompt = ""
|
|
|
+ human_prompt_prefix = ""
|
|
|
+ human_prompt_postfix = ""
|
|
|
+ ai_prompt = ""
|
|
|
|
|
|
content = message.content
|
|
|
|
|
@@ -663,13 +555,7 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
|
|
|
model_prefix = model.split('.')[0]
|
|
|
model_name = model.split('.')[1]
|
|
|
|
|
|
- if model_prefix == "amazon":
|
|
|
- payload["textGenerationConfig"] = { **model_parameters }
|
|
|
- payload["textGenerationConfig"]["stopSequences"] = ["User:"]
|
|
|
-
|
|
|
- payload["inputText"] = self._convert_messages_to_prompt(prompt_messages, model_prefix)
|
|
|
-
|
|
|
- elif model_prefix == "ai21":
|
|
|
+ if model_prefix == "ai21":
|
|
|
payload["temperature"] = model_parameters.get("temperature")
|
|
|
payload["topP"] = model_parameters.get("topP")
|
|
|
payload["maxTokens"] = model_parameters.get("maxTokens")
|
|
@@ -681,28 +567,12 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
|
|
|
payload["frequencyPenalty"] = {model_parameters.get("frequencyPenalty")}
|
|
|
if model_parameters.get("countPenalty"):
|
|
|
payload["countPenalty"] = {model_parameters.get("countPenalty")}
|
|
|
-
|
|
|
- elif model_prefix == "mistral":
|
|
|
- payload["temperature"] = model_parameters.get("temperature")
|
|
|
- payload["top_p"] = model_parameters.get("top_p")
|
|
|
- payload["max_tokens"] = model_parameters.get("max_tokens")
|
|
|
- payload["prompt"] = self._convert_messages_to_prompt(prompt_messages, model_prefix)
|
|
|
- payload["stop"] = stop[:10] if stop else []
|
|
|
-
|
|
|
- elif model_prefix == "anthropic":
|
|
|
- payload = { **model_parameters }
|
|
|
- payload["prompt"] = self._convert_messages_to_prompt(prompt_messages, model_prefix)
|
|
|
- payload["stop_sequences"] = ["\n\nHuman:"] + (stop if stop else [])
|
|
|
-
|
|
|
+
|
|
|
elif model_prefix == "cohere":
|
|
|
payload = { **model_parameters }
|
|
|
payload["prompt"] = prompt_messages[0].content
|
|
|
payload["stream"] = stream
|
|
|
|
|
|
- elif model_prefix == "meta":
|
|
|
- payload = { **model_parameters }
|
|
|
- payload["prompt"] = self._convert_messages_to_prompt(prompt_messages, model_prefix, model_name)
|
|
|
-
|
|
|
else:
|
|
|
raise ValueError(f"Got unknown model prefix {model_prefix}")
|
|
|
|
|
@@ -793,36 +663,16 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
|
|
|
# get output text and calculate num tokens based on model / provider
|
|
|
model_prefix = model.split('.')[0]
|
|
|
|
|
|
- if model_prefix == "amazon":
|
|
|
- output = response_body.get("results")[0].get("outputText").strip('\n')
|
|
|
- prompt_tokens = response_body.get("inputTextTokenCount")
|
|
|
- completion_tokens = response_body.get("results")[0].get("tokenCount")
|
|
|
-
|
|
|
- elif model_prefix == "ai21":
|
|
|
+ if model_prefix == "ai21":
|
|
|
output = response_body.get('completions')[0].get('data').get('text')
|
|
|
prompt_tokens = len(response_body.get("prompt").get("tokens"))
|
|
|
completion_tokens = len(response_body.get('completions')[0].get('data').get('tokens'))
|
|
|
-
|
|
|
- elif model_prefix == "anthropic":
|
|
|
- output = response_body.get("completion")
|
|
|
- prompt_tokens = self.get_num_tokens(model, credentials, prompt_messages)
|
|
|
- completion_tokens = self.get_num_tokens(model, credentials, output if output else '')
|
|
|
|
|
|
elif model_prefix == "cohere":
|
|
|
output = response_body.get("generations")[0].get("text")
|
|
|
prompt_tokens = self.get_num_tokens(model, credentials, prompt_messages)
|
|
|
completion_tokens = self.get_num_tokens(model, credentials, output if output else '')
|
|
|
-
|
|
|
- elif model_prefix == "meta":
|
|
|
- output = response_body.get("generation").strip('\n')
|
|
|
- prompt_tokens = response_body.get("prompt_token_count")
|
|
|
- completion_tokens = response_body.get("generation_token_count")
|
|
|
-
|
|
|
- elif model_prefix == "mistral":
|
|
|
- output = response_body.get("outputs")[0].get("text")
|
|
|
- prompt_tokens = response.get('ResponseMetadata').get('HTTPHeaders').get('x-amzn-bedrock-input-token-count')
|
|
|
- completion_tokens = response.get('ResponseMetadata').get('HTTPHeaders').get('x-amzn-bedrock-output-token-count')
|
|
|
-
|
|
|
+
|
|
|
else:
|
|
|
raise ValueError(f"Got unknown model prefix {model_prefix} when handling block response")
|
|
|
|
|
@@ -893,26 +743,10 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
|
|
|
payload = json.loads(chunk.get('bytes').decode())
|
|
|
|
|
|
model_prefix = model.split('.')[0]
|
|
|
- if model_prefix == "amazon":
|
|
|
- content_delta = payload.get("outputText").strip('\n')
|
|
|
- finish_reason = payload.get("completion_reason")
|
|
|
-
|
|
|
- elif model_prefix == "anthropic":
|
|
|
- content_delta = payload.get("completion")
|
|
|
- finish_reason = payload.get("stop_reason")
|
|
|
-
|
|
|
- elif model_prefix == "cohere":
|
|
|
+ if model_prefix == "cohere":
|
|
|
content_delta = payload.get("text")
|
|
|
finish_reason = payload.get("finish_reason")
|
|
|
|
|
|
- elif model_prefix == "mistral":
|
|
|
- content_delta = payload.get('outputs')[0].get("text")
|
|
|
- finish_reason = payload.get('outputs')[0].get("stop_reason")
|
|
|
-
|
|
|
- elif model_prefix == "meta":
|
|
|
- content_delta = payload.get("generation").strip('\n')
|
|
|
- finish_reason = payload.get("stop_reason")
|
|
|
-
|
|
|
else:
|
|
|
raise ValueError(f"Got unknown model prefix {model_prefix} when handling stream response")
|
|
|
|