|
@@ -0,0 +1,578 @@
|
|
|
+import json
|
|
|
+import logging
|
|
|
+import re
|
|
|
+from typing import Literal, Union, Generator, Dict, List
|
|
|
+
|
|
|
+from core.entities.application_entities import AgentPromptEntity, AgentScratchpadUnit
|
|
|
+from core.application_queue_manager import PublishFrom
|
|
|
+from core.model_runtime.utils.encoders import jsonable_encoder
|
|
|
+from core.model_runtime.entities.message_entities import PromptMessageTool, PromptMessage, \
|
|
|
+ UserPromptMessage, SystemPromptMessage, AssistantPromptMessage
|
|
|
+from core.model_runtime.entities.llm_entities import LLMResult, LLMUsage, LLMResultChunk, LLMResultChunkDelta
|
|
|
+from core.model_manager import ModelInstance
|
|
|
+
|
|
|
+from core.tools.errors import ToolInvokeError, ToolNotFoundError, \
|
|
|
+ ToolNotSupportedError, ToolProviderNotFoundError, ToolParamterValidationError, \
|
|
|
+ ToolProviderCredentialValidationError
|
|
|
+
|
|
|
+from core.features.assistant_base_runner import BaseAssistantApplicationRunner
|
|
|
+
|
|
|
+from models.model import Conversation, Message
|
|
|
+
|
|
|
+logger = logging.getLogger(__name__)
|
|
|
+
|
|
|
+class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
|
|
|
+ def run(self, model_instance: ModelInstance,
|
|
|
+ conversation: Conversation,
|
|
|
+ message: Message,
|
|
|
+ query: str,
|
|
|
+ ) -> Union[Generator, LLMResult]:
|
|
|
+ """
|
|
|
+ Run Cot agent application
|
|
|
+ """
|
|
|
+ app_orchestration_config = self.app_orchestration_config
|
|
|
+ self._repacket_app_orchestration_config(app_orchestration_config)
|
|
|
+
|
|
|
+ agent_scratchpad: List[AgentScratchpadUnit] = []
|
|
|
+
|
|
|
+ # check model mode
|
|
|
+ if self.app_orchestration_config.model_config.mode == "completion":
|
|
|
+ # TODO: stop words
|
|
|
+ if 'Observation' not in app_orchestration_config.model_config.stop:
|
|
|
+ app_orchestration_config.model_config.stop.append('Observation')
|
|
|
+
|
|
|
+ iteration_step = 1
|
|
|
+ max_iteration_steps = min(self.app_orchestration_config.agent.max_iteration, 5) + 1
|
|
|
+
|
|
|
+ prompt_messages = self.history_prompt_messages
|
|
|
+
|
|
|
+ # convert tools into ModelRuntime Tool format
|
|
|
+ prompt_messages_tools: List[PromptMessageTool] = []
|
|
|
+ tool_instances = {}
|
|
|
+ for tool in self.app_orchestration_config.agent.tools if self.app_orchestration_config.agent else []:
|
|
|
+ try:
|
|
|
+ prompt_tool, tool_entity = self._convert_tool_to_prompt_message_tool(tool)
|
|
|
+ except Exception:
|
|
|
+ # api tool may be deleted
|
|
|
+ continue
|
|
|
+ # save tool entity
|
|
|
+ tool_instances[tool.tool_name] = tool_entity
|
|
|
+ # save prompt tool
|
|
|
+ prompt_messages_tools.append(prompt_tool)
|
|
|
+
|
|
|
+ # convert dataset tools into ModelRuntime Tool format
|
|
|
+ for dataset_tool in self.dataset_tools:
|
|
|
+ prompt_tool = self._convert_dataset_retriever_tool_to_prompt_message_tool(dataset_tool)
|
|
|
+ # save prompt tool
|
|
|
+ prompt_messages_tools.append(prompt_tool)
|
|
|
+ # save tool entity
|
|
|
+ tool_instances[dataset_tool.identity.name] = dataset_tool
|
|
|
+
|
|
|
+ function_call_state = True
|
|
|
+ llm_usage = {
|
|
|
+ 'usage': None
|
|
|
+ }
|
|
|
+ final_answer = ''
|
|
|
+
|
|
|
+ def increse_usage(final_llm_usage_dict: Dict[str, LLMUsage], usage: LLMUsage):
|
|
|
+ if not final_llm_usage_dict['usage']:
|
|
|
+ final_llm_usage_dict['usage'] = usage
|
|
|
+ else:
|
|
|
+ llm_usage = final_llm_usage_dict['usage']
|
|
|
+ llm_usage.prompt_tokens += usage.prompt_tokens
|
|
|
+ llm_usage.completion_tokens += usage.completion_tokens
|
|
|
+ llm_usage.prompt_price += usage.prompt_price
|
|
|
+ llm_usage.completion_price += usage.completion_price
|
|
|
+
|
|
|
+ while function_call_state and iteration_step <= max_iteration_steps:
|
|
|
+ # continue to run until there is not any tool call
|
|
|
+ function_call_state = False
|
|
|
+
|
|
|
+ if iteration_step == max_iteration_steps:
|
|
|
+ # the last iteration, remove all tools
|
|
|
+ prompt_messages_tools = []
|
|
|
+
|
|
|
+ message_file_ids = []
|
|
|
+ agent_thought = self.create_agent_thought(
|
|
|
+ message_id=message.id,
|
|
|
+ message='',
|
|
|
+ tool_name='',
|
|
|
+ tool_input='',
|
|
|
+ messages_ids=message_file_ids
|
|
|
+ )
|
|
|
+ self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
|
|
|
+
|
|
|
+ # update prompt messages
|
|
|
+ prompt_messages = self._originze_cot_prompt_messages(
|
|
|
+ mode=app_orchestration_config.model_config.mode,
|
|
|
+ prompt_messages=prompt_messages,
|
|
|
+ tools=prompt_messages_tools,
|
|
|
+ agent_scratchpad=agent_scratchpad,
|
|
|
+ agent_prompt_message=app_orchestration_config.agent.prompt,
|
|
|
+ instruction=app_orchestration_config.prompt_template.simple_prompt_template,
|
|
|
+ input=query
|
|
|
+ )
|
|
|
+
|
|
|
+ # recale llm max tokens
|
|
|
+ self.recale_llm_max_tokens(self.model_config, prompt_messages)
|
|
|
+ # invoke model
|
|
|
+ llm_result: LLMResult = model_instance.invoke_llm(
|
|
|
+ prompt_messages=prompt_messages,
|
|
|
+ model_parameters=app_orchestration_config.model_config.parameters,
|
|
|
+ tools=[],
|
|
|
+ stop=app_orchestration_config.model_config.stop,
|
|
|
+ stream=False,
|
|
|
+ user=self.user_id,
|
|
|
+ callbacks=[],
|
|
|
+ )
|
|
|
+
|
|
|
+ # check llm result
|
|
|
+ if not llm_result:
|
|
|
+ raise ValueError("failed to invoke llm")
|
|
|
+
|
|
|
+ # get scratchpad
|
|
|
+ scratchpad = self._extract_response_scratchpad(llm_result.message.content)
|
|
|
+ agent_scratchpad.append(scratchpad)
|
|
|
+
|
|
|
+ # get llm usage
|
|
|
+ if llm_result.usage:
|
|
|
+ increse_usage(llm_usage, llm_result.usage)
|
|
|
+
|
|
|
+ self.save_agent_thought(agent_thought=agent_thought,
|
|
|
+ tool_name=scratchpad.action.action_name if scratchpad.action else '',
|
|
|
+ tool_input=scratchpad.action.action_input if scratchpad.action else '',
|
|
|
+ thought=scratchpad.thought,
|
|
|
+ observation='',
|
|
|
+ answer=llm_result.message.content,
|
|
|
+ messages_ids=[],
|
|
|
+ llm_usage=llm_result.usage)
|
|
|
+
|
|
|
+ if scratchpad.action and scratchpad.action.action_name.lower() != "final answer":
|
|
|
+ self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
|
|
|
+
|
|
|
+ # publish agent thought if it's not empty and there is a action
|
|
|
+ if scratchpad.thought and scratchpad.action:
|
|
|
+ # check if final answer
|
|
|
+ if not scratchpad.action.action_name.lower() == "final answer":
|
|
|
+ yield LLMResultChunk(
|
|
|
+ model=model_instance.model,
|
|
|
+ prompt_messages=prompt_messages,
|
|
|
+ delta=LLMResultChunkDelta(
|
|
|
+ index=0,
|
|
|
+ message=AssistantPromptMessage(
|
|
|
+ content=scratchpad.thought
|
|
|
+ ),
|
|
|
+ usage=llm_result.usage,
|
|
|
+ ),
|
|
|
+ system_fingerprint=''
|
|
|
+ )
|
|
|
+
|
|
|
+ if not scratchpad.action:
|
|
|
+ # failed to extract action, return final answer directly
|
|
|
+ final_answer = scratchpad.agent_response or ''
|
|
|
+ else:
|
|
|
+ if scratchpad.action.action_name.lower() == "final answer":
|
|
|
+ # action is final answer, return final answer directly
|
|
|
+ try:
|
|
|
+ final_answer = scratchpad.action.action_input if \
|
|
|
+ isinstance(scratchpad.action.action_input, str) else \
|
|
|
+ json.dumps(scratchpad.action.action_input)
|
|
|
+ except json.JSONDecodeError:
|
|
|
+ final_answer = f'{scratchpad.action.action_input}'
|
|
|
+ else:
|
|
|
+ function_call_state = True
|
|
|
+
|
|
|
+ # action is tool call, invoke tool
|
|
|
+ tool_call_name = scratchpad.action.action_name
|
|
|
+ tool_call_args = scratchpad.action.action_input
|
|
|
+ tool_instance = tool_instances.get(tool_call_name)
|
|
|
+ if not tool_instance:
|
|
|
+ logger.error(f"failed to find tool instance: {tool_call_name}")
|
|
|
+ answer = f"there is not a tool named {tool_call_name}"
|
|
|
+ self.save_agent_thought(agent_thought=agent_thought,
|
|
|
+ tool_name='',
|
|
|
+ tool_input='',
|
|
|
+ thought=None,
|
|
|
+ observation=answer,
|
|
|
+ answer=answer,
|
|
|
+ messages_ids=[])
|
|
|
+ self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
|
|
|
+ else:
|
|
|
+ # invoke tool
|
|
|
+ error_response = None
|
|
|
+ try:
|
|
|
+ tool_response = tool_instance.invoke(
|
|
|
+ user_id=self.user_id,
|
|
|
+ tool_paramters=tool_call_args if isinstance(tool_call_args, dict) else json.loads(tool_call_args)
|
|
|
+ )
|
|
|
+ # transform tool response to llm friendly response
|
|
|
+ tool_response = self.transform_tool_invoke_messages(tool_response)
|
|
|
+ # extract binary data from tool invoke message
|
|
|
+ binary_files = self.extract_tool_response_binary(tool_response)
|
|
|
+ # create message file
|
|
|
+ message_files = self.create_message_files(binary_files)
|
|
|
+ # publish files
|
|
|
+ for message_file, save_as in message_files:
|
|
|
+ if save_as:
|
|
|
+ self.variables_pool.set_file(tool_name=tool_call_name,
|
|
|
+ value=message_file.id,
|
|
|
+ name=save_as)
|
|
|
+ self.queue_manager.publish_message_file(message_file, PublishFrom.APPLICATION_MANAGER)
|
|
|
+
|
|
|
+ message_file_ids = [message_file.id for message_file, _ in message_files]
|
|
|
+ except ToolProviderCredentialValidationError as e:
|
|
|
+ error_response = f"Plese check your tool provider credentials"
|
|
|
+ except (
|
|
|
+ ToolNotFoundError, ToolNotSupportedError, ToolProviderNotFoundError
|
|
|
+ ) as e:
|
|
|
+ error_response = f"there is not a tool named {tool_call_name}"
|
|
|
+ except (
|
|
|
+ ToolParamterValidationError
|
|
|
+ ) as e:
|
|
|
+ error_response = f"tool paramters validation error: {e}, please check your tool paramters"
|
|
|
+ except ToolInvokeError as e:
|
|
|
+ error_response = f"tool invoke error: {e}"
|
|
|
+ except Exception as e:
|
|
|
+ error_response = f"unknown error: {e}"
|
|
|
+
|
|
|
+ if error_response:
|
|
|
+ observation = error_response
|
|
|
+ logger.error(error_response)
|
|
|
+ else:
|
|
|
+ observation = self._convert_tool_response_to_str(tool_response)
|
|
|
+
|
|
|
+ # save scratchpad
|
|
|
+ scratchpad.observation = observation
|
|
|
+ scratchpad.agent_response = llm_result.message.content
|
|
|
+
|
|
|
+ # save agent thought
|
|
|
+ self.save_agent_thought(
|
|
|
+ agent_thought=agent_thought,
|
|
|
+ tool_name=tool_call_name,
|
|
|
+ tool_input=tool_call_args,
|
|
|
+ thought=None,
|
|
|
+ observation=observation,
|
|
|
+ answer=llm_result.message.content,
|
|
|
+ messages_ids=message_file_ids,
|
|
|
+ )
|
|
|
+ self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
|
|
|
+
|
|
|
+ # update prompt tool message
|
|
|
+ for prompt_tool in prompt_messages_tools:
|
|
|
+ self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
|
|
|
+
|
|
|
+ iteration_step += 1
|
|
|
+
|
|
|
+ yield LLMResultChunk(
|
|
|
+ model=model_instance.model,
|
|
|
+ prompt_messages=prompt_messages,
|
|
|
+ delta=LLMResultChunkDelta(
|
|
|
+ index=0,
|
|
|
+ message=AssistantPromptMessage(
|
|
|
+ content=final_answer
|
|
|
+ ),
|
|
|
+ usage=llm_usage['usage']
|
|
|
+ ),
|
|
|
+ system_fingerprint=''
|
|
|
+ )
|
|
|
+
|
|
|
+ # save agent thought
|
|
|
+ self.save_agent_thought(
|
|
|
+ agent_thought=agent_thought,
|
|
|
+ tool_name='',
|
|
|
+ tool_input='',
|
|
|
+ thought=final_answer,
|
|
|
+ observation='',
|
|
|
+ answer=final_answer,
|
|
|
+ messages_ids=[]
|
|
|
+ )
|
|
|
+
|
|
|
+ self.update_db_variables(self.variables_pool, self.db_variables_pool)
|
|
|
+ # publish end event
|
|
|
+ self.queue_manager.publish_message_end(LLMResult(
|
|
|
+ model=model_instance.model,
|
|
|
+ prompt_messages=prompt_messages,
|
|
|
+ message=AssistantPromptMessage(
|
|
|
+ content=final_answer
|
|
|
+ ),
|
|
|
+ usage=llm_usage['usage'],
|
|
|
+ system_fingerprint=''
|
|
|
+ ), PublishFrom.APPLICATION_MANAGER)
|
|
|
+
|
|
|
+ def _extract_response_scratchpad(self, content: str) -> AgentScratchpadUnit:
|
|
|
+ """
|
|
|
+ extract response from llm response
|
|
|
+ """
|
|
|
+ def extra_quotes() -> AgentScratchpadUnit:
|
|
|
+ agent_response = content
|
|
|
+ # try to extract all quotes
|
|
|
+ pattern = re.compile(r'```(.*?)```', re.DOTALL)
|
|
|
+ quotes = pattern.findall(content)
|
|
|
+
|
|
|
+ # try to extract action from end to start
|
|
|
+ for i in range(len(quotes) - 1, 0, -1):
|
|
|
+ """
|
|
|
+ 1. use json load to parse action
|
|
|
+ 2. use plain text `Action: xxx` to parse action
|
|
|
+ """
|
|
|
+ try:
|
|
|
+ action = json.loads(quotes[i].replace('```', ''))
|
|
|
+ action_name = action.get("action")
|
|
|
+ action_input = action.get("action_input")
|
|
|
+ agent_thought = agent_response.replace(quotes[i], '')
|
|
|
+
|
|
|
+ if action_name and action_input:
|
|
|
+ return AgentScratchpadUnit(
|
|
|
+ agent_response=content,
|
|
|
+ thought=agent_thought,
|
|
|
+ action_str=quotes[i],
|
|
|
+ action=AgentScratchpadUnit.Action(
|
|
|
+ action_name=action_name,
|
|
|
+ action_input=action_input,
|
|
|
+ )
|
|
|
+ )
|
|
|
+ except:
|
|
|
+ # try to parse action from plain text
|
|
|
+ action_name = re.findall(r'action: (.*)', quotes[i], re.IGNORECASE)
|
|
|
+ action_input = re.findall(r'action input: (.*)', quotes[i], re.IGNORECASE)
|
|
|
+ # delete action from agent response
|
|
|
+ agent_thought = agent_response.replace(quotes[i], '')
|
|
|
+ # remove extra quotes
|
|
|
+ agent_thought = re.sub(r'```(json)*\n*```', '', agent_thought, flags=re.DOTALL)
|
|
|
+ # remove Action: xxx from agent thought
|
|
|
+ agent_thought = re.sub(r'Action:.*', '', agent_thought, flags=re.IGNORECASE)
|
|
|
+
|
|
|
+ if action_name and action_input:
|
|
|
+ return AgentScratchpadUnit(
|
|
|
+ agent_response=content,
|
|
|
+ thought=agent_thought,
|
|
|
+ action_str=quotes[i],
|
|
|
+ action=AgentScratchpadUnit.Action(
|
|
|
+ action_name=action_name[0],
|
|
|
+ action_input=action_input[0],
|
|
|
+ )
|
|
|
+ )
|
|
|
+
|
|
|
+ def extra_json():
|
|
|
+ agent_response = content
|
|
|
+ # try to extract all json
|
|
|
+ structures, pair_match_stack = [], []
|
|
|
+ started_at, end_at = 0, 0
|
|
|
+ for i in range(len(content)):
|
|
|
+ if content[i] == '{':
|
|
|
+ pair_match_stack.append(i)
|
|
|
+ if len(pair_match_stack) == 1:
|
|
|
+ started_at = i
|
|
|
+ elif content[i] == '}':
|
|
|
+ begin = pair_match_stack.pop()
|
|
|
+ if not pair_match_stack:
|
|
|
+ end_at = i + 1
|
|
|
+ structures.append((content[begin:i+1], (started_at, end_at)))
|
|
|
+
|
|
|
+ # handle the last character
|
|
|
+ if pair_match_stack:
|
|
|
+ end_at = len(content)
|
|
|
+ structures.append((content[pair_match_stack[0]:], (started_at, end_at)))
|
|
|
+
|
|
|
+ for i in range(len(structures), 0, -1):
|
|
|
+ try:
|
|
|
+ json_content, (started_at, end_at) = structures[i - 1]
|
|
|
+ action = json.loads(json_content)
|
|
|
+ action_name = action.get("action")
|
|
|
+ action_input = action.get("action_input")
|
|
|
+ # delete json content from agent response
|
|
|
+ agent_thought = agent_response[:started_at] + agent_response[end_at:]
|
|
|
+ # remove extra quotes like ```(json)*\n\n```
|
|
|
+ agent_thought = re.sub(r'```(json)*\n*```', '', agent_thought, flags=re.DOTALL)
|
|
|
+ # remove Action: xxx from agent thought
|
|
|
+ agent_thought = re.sub(r'Action:.*', '', agent_thought, flags=re.IGNORECASE)
|
|
|
+
|
|
|
+ if action_name and action_input:
|
|
|
+ return AgentScratchpadUnit(
|
|
|
+ agent_response=content,
|
|
|
+ thought=agent_thought,
|
|
|
+ action_str=json_content,
|
|
|
+ action=AgentScratchpadUnit.Action(
|
|
|
+ action_name=action_name,
|
|
|
+ action_input=action_input,
|
|
|
+ )
|
|
|
+ )
|
|
|
+ except:
|
|
|
+ pass
|
|
|
+
|
|
|
+ agent_scratchpad = extra_quotes()
|
|
|
+ if agent_scratchpad:
|
|
|
+ return agent_scratchpad
|
|
|
+ agent_scratchpad = extra_json()
|
|
|
+ if agent_scratchpad:
|
|
|
+ return agent_scratchpad
|
|
|
+
|
|
|
+ return AgentScratchpadUnit(
|
|
|
+ agent_response=content,
|
|
|
+ thought=content,
|
|
|
+ action_str='',
|
|
|
+ action=None
|
|
|
+ )
|
|
|
+
|
|
|
+ def _check_cot_prompt_messages(self, mode: Literal["completion", "chat"],
|
|
|
+ agent_prompt_message: AgentPromptEntity,
|
|
|
+ ):
|
|
|
+ """
|
|
|
+ check chain of thought prompt messages, a standard prompt message is like:
|
|
|
+ Respond to the human as helpfully and accurately as possible.
|
|
|
+
|
|
|
+ {{instruction}}
|
|
|
+
|
|
|
+ You have access to the following tools:
|
|
|
+
|
|
|
+ {{tools}}
|
|
|
+
|
|
|
+ Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
|
|
|
+ Valid action values: "Final Answer" or {{tool_names}}
|
|
|
+
|
|
|
+ Provide only ONE action per $JSON_BLOB, as shown:
|
|
|
+
|
|
|
+ ```
|
|
|
+ {
|
|
|
+ "action": $TOOL_NAME,
|
|
|
+ "action_input": $ACTION_INPUT
|
|
|
+ }
|
|
|
+ ```
|
|
|
+ """
|
|
|
+
|
|
|
+ # parse agent prompt message
|
|
|
+ first_prompt = agent_prompt_message.first_prompt
|
|
|
+ next_iteration = agent_prompt_message.next_iteration
|
|
|
+
|
|
|
+ if not isinstance(first_prompt, str) or not isinstance(next_iteration, str):
|
|
|
+ raise ValueError(f"first_prompt or next_iteration is required in CoT agent mode")
|
|
|
+
|
|
|
+ # check instruction, tools, and tool_names slots
|
|
|
+ if not first_prompt.find("{{instruction}}") >= 0:
|
|
|
+ raise ValueError("{{instruction}} is required in first_prompt")
|
|
|
+ if not first_prompt.find("{{tools}}") >= 0:
|
|
|
+ raise ValueError("{{tools}} is required in first_prompt")
|
|
|
+ if not first_prompt.find("{{tool_names}}") >= 0:
|
|
|
+ raise ValueError("{{tool_names}} is required in first_prompt")
|
|
|
+
|
|
|
+ if mode == "completion":
|
|
|
+ if not first_prompt.find("{{query}}") >= 0:
|
|
|
+ raise ValueError("{{query}} is required in first_prompt")
|
|
|
+ if not first_prompt.find("{{agent_scratchpad}}") >= 0:
|
|
|
+ raise ValueError("{{agent_scratchpad}} is required in first_prompt")
|
|
|
+
|
|
|
+ if mode == "completion":
|
|
|
+ if not next_iteration.find("{{observation}}") >= 0:
|
|
|
+ raise ValueError("{{observation}} is required in next_iteration")
|
|
|
+
|
|
|
+ def _convert_strachpad_list_to_str(self, agent_scratchpad: List[AgentScratchpadUnit]) -> str:
|
|
|
+ """
|
|
|
+ convert agent scratchpad list to str
|
|
|
+ """
|
|
|
+ next_iteration = self.app_orchestration_config.agent.prompt.next_iteration
|
|
|
+
|
|
|
+ result = ''
|
|
|
+ for scratchpad in agent_scratchpad:
|
|
|
+ result += scratchpad.thought + next_iteration.replace("{{observation}}", scratchpad.observation) + "\n"
|
|
|
+
|
|
|
+ return result
|
|
|
+
|
|
|
+ def _originze_cot_prompt_messages(self, mode: Literal["completion", "chat"],
|
|
|
+ prompt_messages: List[PromptMessage],
|
|
|
+ tools: List[PromptMessageTool],
|
|
|
+ agent_scratchpad: List[AgentScratchpadUnit],
|
|
|
+ agent_prompt_message: AgentPromptEntity,
|
|
|
+ instruction: str,
|
|
|
+ input: str,
|
|
|
+ ) -> List[PromptMessage]:
|
|
|
+ """
|
|
|
+ originze chain of thought prompt messages, a standard prompt message is like:
|
|
|
+ Respond to the human as helpfully and accurately as possible.
|
|
|
+
|
|
|
+ {{instruction}}
|
|
|
+
|
|
|
+ You have access to the following tools:
|
|
|
+
|
|
|
+ {{tools}}
|
|
|
+
|
|
|
+ Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
|
|
|
+ Valid action values: "Final Answer" or {{tool_names}}
|
|
|
+
|
|
|
+ Provide only ONE action per $JSON_BLOB, as shown:
|
|
|
+
|
|
|
+ ```
|
|
|
+ {{{{
|
|
|
+ "action": $TOOL_NAME,
|
|
|
+ "action_input": $ACTION_INPUT
|
|
|
+ }}}}
|
|
|
+ ```
|
|
|
+ """
|
|
|
+
|
|
|
+ self._check_cot_prompt_messages(mode, agent_prompt_message)
|
|
|
+
|
|
|
+ # parse agent prompt message
|
|
|
+ first_prompt = agent_prompt_message.first_prompt
|
|
|
+
|
|
|
+ # parse tools
|
|
|
+ tools_str = self._jsonify_tool_prompt_messages(tools)
|
|
|
+
|
|
|
+ # parse tools name
|
|
|
+ tool_names = '"' + '","'.join([tool.name for tool in tools]) + '"'
|
|
|
+
|
|
|
+ # get system message
|
|
|
+ system_message = first_prompt.replace("{{instruction}}", instruction) \
|
|
|
+ .replace("{{tools}}", tools_str) \
|
|
|
+ .replace("{{tool_names}}", tool_names)
|
|
|
+
|
|
|
+ # originze prompt messages
|
|
|
+ if mode == "chat":
|
|
|
+ # override system message
|
|
|
+ overrided = False
|
|
|
+ prompt_messages = prompt_messages.copy()
|
|
|
+ for prompt_message in prompt_messages:
|
|
|
+ if isinstance(prompt_message, SystemPromptMessage):
|
|
|
+ prompt_message.content = system_message
|
|
|
+ overrided = True
|
|
|
+ break
|
|
|
+
|
|
|
+ if not overrided:
|
|
|
+ prompt_messages.insert(0, SystemPromptMessage(
|
|
|
+ content=system_message,
|
|
|
+ ))
|
|
|
+
|
|
|
+ # add assistant message
|
|
|
+ if len(agent_scratchpad) > 0:
|
|
|
+ prompt_messages.append(AssistantPromptMessage(
|
|
|
+ content=agent_scratchpad[-1].thought + "\n" + agent_scratchpad[-1].observation
|
|
|
+ ))
|
|
|
+
|
|
|
+ # add user message
|
|
|
+ if len(agent_scratchpad) > 0:
|
|
|
+ prompt_messages.append(UserPromptMessage(
|
|
|
+ content=input,
|
|
|
+ ))
|
|
|
+
|
|
|
+ return prompt_messages
|
|
|
+ elif mode == "completion":
|
|
|
+ # parse agent scratchpad
|
|
|
+ agent_scratchpad_str = self._convert_strachpad_list_to_str(agent_scratchpad)
|
|
|
+ # parse prompt messages
|
|
|
+ return [UserPromptMessage(
|
|
|
+ content=first_prompt.replace("{{instruction}}", instruction)
|
|
|
+ .replace("{{tools}}", tools_str)
|
|
|
+ .replace("{{tool_names}}", tool_names)
|
|
|
+ .replace("{{query}}", input)
|
|
|
+ .replace("{{agent_scratchpad}}", agent_scratchpad_str),
|
|
|
+ )]
|
|
|
+ else:
|
|
|
+ raise ValueError(f"mode {mode} is not supported")
|
|
|
+
|
|
|
+ def _jsonify_tool_prompt_messages(self, tools: list[PromptMessageTool]) -> str:
|
|
|
+ """
|
|
|
+ jsonify tool prompt messages
|
|
|
+ """
|
|
|
+ tools = jsonable_encoder(tools)
|
|
|
+ try:
|
|
|
+ return json.dumps(tools, ensure_ascii=False)
|
|
|
+ except json.JSONDecodeError:
|
|
|
+ return json.dumps(tools)
|