|
@@ -1,5 +1,6 @@
|
|
|
import logging
|
|
|
from decimal import Decimal
|
|
|
+from urllib.parse import urljoin
|
|
|
|
|
|
import requests
|
|
|
import json
|
|
@@ -9,9 +10,12 @@ from typing import Optional, Generator, Union, List, cast
|
|
|
from core.model_runtime.entities.common_entities import I18nObject
|
|
|
from core.model_runtime.utils import helper
|
|
|
|
|
|
-from core.model_runtime.entities.message_entities import ImagePromptMessageContent, PromptMessage, AssistantPromptMessage, PromptMessageContent, \
|
|
|
- PromptMessageContentType, PromptMessageFunction, PromptMessageTool, UserPromptMessage, SystemPromptMessage, ToolPromptMessage
|
|
|
-from core.model_runtime.entities.model_entities import ModelPropertyKey, ModelType, PriceConfig, ParameterRule, DefaultParameterName, \
|
|
|
+from core.model_runtime.entities.message_entities import ImagePromptMessageContent, PromptMessage, \
|
|
|
+ AssistantPromptMessage, PromptMessageContent, \
|
|
|
+ PromptMessageContentType, PromptMessageFunction, PromptMessageTool, UserPromptMessage, SystemPromptMessage, \
|
|
|
+ ToolPromptMessage
|
|
|
+from core.model_runtime.entities.model_entities import ModelPropertyKey, ModelType, PriceConfig, ParameterRule, \
|
|
|
+ DefaultParameterName, \
|
|
|
ParameterType, ModelPropertyKey, FetchFrom, AIModelEntity
|
|
|
from core.model_runtime.entities.llm_entities import LLMMode, LLMResult, LLMResultChunk, LLMResultChunkDelta
|
|
|
from core.model_runtime.errors.invoke import InvokeError
|
|
@@ -70,7 +74,7 @@ class OAIAPICompatLargeLanguageModel(_CommonOAI_API_Compat, LargeLanguageModel):
|
|
|
:return:
|
|
|
"""
|
|
|
return self._num_tokens_from_messages(model, prompt_messages, tools)
|
|
|
-
|
|
|
+
|
|
|
def validate_credentials(self, model: str, credentials: dict) -> None:
|
|
|
"""
|
|
|
Validate model credentials using requests to ensure compatibility with all providers following OpenAI's API standard.
|
|
@@ -89,6 +93,8 @@ class OAIAPICompatLargeLanguageModel(_CommonOAI_API_Compat, LargeLanguageModel):
|
|
|
headers["Authorization"] = f"Bearer {api_key}"
|
|
|
|
|
|
endpoint_url = credentials['endpoint_url']
|
|
|
+ if not endpoint_url.endswith('/'):
|
|
|
+ endpoint_url += '/'
|
|
|
|
|
|
# prepare the payload for a simple ping to the model
|
|
|
data = {
|
|
@@ -105,11 +111,13 @@ class OAIAPICompatLargeLanguageModel(_CommonOAI_API_Compat, LargeLanguageModel):
|
|
|
"content": "ping"
|
|
|
},
|
|
|
]
|
|
|
+ endpoint_url = urljoin(endpoint_url, 'chat/completions')
|
|
|
elif completion_type is LLMMode.COMPLETION:
|
|
|
data['prompt'] = 'ping'
|
|
|
+ endpoint_url = urljoin(endpoint_url, 'completions')
|
|
|
else:
|
|
|
raise ValueError("Unsupported completion type for model configuration.")
|
|
|
-
|
|
|
+
|
|
|
# send a post request to validate the credentials
|
|
|
response = requests.post(
|
|
|
endpoint_url,
|
|
@@ -119,8 +127,24 @@ class OAIAPICompatLargeLanguageModel(_CommonOAI_API_Compat, LargeLanguageModel):
|
|
|
)
|
|
|
|
|
|
if response.status_code != 200:
|
|
|
- raise CredentialsValidateFailedError(f'Credentials validation failed with status code {response.status_code}: {response.text}')
|
|
|
-
|
|
|
+ raise CredentialsValidateFailedError(
|
|
|
+ f'Credentials validation failed with status code {response.status_code}')
|
|
|
+
|
|
|
+ try:
|
|
|
+ json_result = response.json()
|
|
|
+ except json.JSONDecodeError as e:
|
|
|
+ raise CredentialsValidateFailedError(f'Credentials validation failed: JSON decode error')
|
|
|
+
|
|
|
+ if (completion_type is LLMMode.CHAT
|
|
|
+ and ('object' not in json_result or json_result['object'] != 'chat.completion')):
|
|
|
+ raise CredentialsValidateFailedError(
|
|
|
+ f'Credentials validation failed: invalid response object, must be \'chat.completion\'')
|
|
|
+ elif (completion_type is LLMMode.COMPLETION
|
|
|
+ and ('object' not in json_result or json_result['object'] != 'text_completion')):
|
|
|
+ raise CredentialsValidateFailedError(
|
|
|
+ f'Credentials validation failed: invalid response object, must be \'text_completion\'')
|
|
|
+ except CredentialsValidateFailedError:
|
|
|
+ raise
|
|
|
except Exception as ex:
|
|
|
raise CredentialsValidateFailedError(f'An error occurred during credentials validation: {str(ex)}')
|
|
|
|
|
@@ -134,8 +158,8 @@ class OAIAPICompatLargeLanguageModel(_CommonOAI_API_Compat, LargeLanguageModel):
|
|
|
model_type=ModelType.LLM,
|
|
|
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
|
|
|
model_properties={
|
|
|
- ModelPropertyKey.CONTEXT_SIZE: credentials.get('context_size'),
|
|
|
- ModelPropertyKey.MODE: 'chat'
|
|
|
+ ModelPropertyKey.CONTEXT_SIZE: int(credentials.get('context_size')),
|
|
|
+ ModelPropertyKey.MODE: credentials.get('mode'),
|
|
|
},
|
|
|
parameter_rules=[
|
|
|
ParameterRule(
|
|
@@ -197,11 +221,11 @@ class OAIAPICompatLargeLanguageModel(_CommonOAI_API_Compat, LargeLanguageModel):
|
|
|
|
|
|
return entity
|
|
|
|
|
|
-
|
|
|
# validate_credentials method has been rewritten to use the requests library for compatibility with all providers following OpenAI's API standard.
|
|
|
- def _generate(self, model: str, credentials: dict, prompt_messages: list[PromptMessage], model_parameters: dict,
|
|
|
- tools: Optional[list[PromptMessageTool]] = None, stop: Optional[List[str]] = None, stream: bool = True, \
|
|
|
- user: Optional[str] = None) -> Union[LLMResult, Generator]:
|
|
|
+ def _generate(self, model: str, credentials: dict, prompt_messages: list[PromptMessage], model_parameters: dict,
|
|
|
+ tools: Optional[list[PromptMessageTool]] = None, stop: Optional[List[str]] = None,
|
|
|
+ stream: bool = True, \
|
|
|
+ user: Optional[str] = None) -> Union[LLMResult, Generator]:
|
|
|
"""
|
|
|
Invoke llm completion model
|
|
|
|
|
@@ -223,7 +247,9 @@ class OAIAPICompatLargeLanguageModel(_CommonOAI_API_Compat, LargeLanguageModel):
|
|
|
headers["Authorization"] = f"Bearer {api_key}"
|
|
|
|
|
|
endpoint_url = credentials["endpoint_url"]
|
|
|
-
|
|
|
+ if not endpoint_url.endswith('/'):
|
|
|
+ endpoint_url += '/'
|
|
|
+
|
|
|
data = {
|
|
|
"model": model,
|
|
|
"stream": stream,
|
|
@@ -233,8 +259,10 @@ class OAIAPICompatLargeLanguageModel(_CommonOAI_API_Compat, LargeLanguageModel):
|
|
|
completion_type = LLMMode.value_of(credentials['mode'])
|
|
|
|
|
|
if completion_type is LLMMode.CHAT:
|
|
|
+ endpoint_url = urljoin(endpoint_url, 'chat/completions')
|
|
|
data['messages'] = [self._convert_prompt_message_to_dict(m) for m in prompt_messages]
|
|
|
elif completion_type == LLMMode.COMPLETION:
|
|
|
+ endpoint_url = urljoin(endpoint_url, 'completions')
|
|
|
data['prompt'] = prompt_messages[0].content
|
|
|
else:
|
|
|
raise ValueError("Unsupported completion type for model configuration.")
|
|
@@ -245,8 +273,8 @@ class OAIAPICompatLargeLanguageModel(_CommonOAI_API_Compat, LargeLanguageModel):
|
|
|
data["tool_choice"] = "auto"
|
|
|
|
|
|
for tool in tools:
|
|
|
- formatted_tools.append( helper.dump_model(PromptMessageFunction(function=tool)))
|
|
|
-
|
|
|
+ formatted_tools.append(helper.dump_model(PromptMessageFunction(function=tool)))
|
|
|
+
|
|
|
data["tools"] = formatted_tools
|
|
|
|
|
|
if stop:
|
|
@@ -254,7 +282,7 @@ class OAIAPICompatLargeLanguageModel(_CommonOAI_API_Compat, LargeLanguageModel):
|
|
|
|
|
|
if user:
|
|
|
data["user"] = user
|
|
|
-
|
|
|
+
|
|
|
response = requests.post(
|
|
|
endpoint_url,
|
|
|
headers=headers,
|
|
@@ -275,8 +303,8 @@ class OAIAPICompatLargeLanguageModel(_CommonOAI_API_Compat, LargeLanguageModel):
|
|
|
|
|
|
return self._handle_generate_response(model, credentials, response, prompt_messages)
|
|
|
|
|
|
- def _handle_generate_stream_response(self, model: str, credentials: dict, response: requests.Response,
|
|
|
- prompt_messages: list[PromptMessage]) -> Generator:
|
|
|
+ def _handle_generate_stream_response(self, model: str, credentials: dict, response: requests.Response,
|
|
|
+ prompt_messages: list[PromptMessage]) -> Generator:
|
|
|
"""
|
|
|
Handle llm stream response
|
|
|
|
|
@@ -313,51 +341,64 @@ class OAIAPICompatLargeLanguageModel(_CommonOAI_API_Compat, LargeLanguageModel):
|
|
|
if chunk:
|
|
|
decoded_chunk = chunk.decode('utf-8').strip().lstrip('data: ').lstrip()
|
|
|
|
|
|
+ chunk_json = None
|
|
|
try:
|
|
|
chunk_json = json.loads(decoded_chunk)
|
|
|
# stream ended
|
|
|
except json.JSONDecodeError as e:
|
|
|
yield create_final_llm_result_chunk(
|
|
|
- index=chunk_index + 1,
|
|
|
+ index=chunk_index + 1,
|
|
|
message=AssistantPromptMessage(content=""),
|
|
|
finish_reason="Non-JSON encountered."
|
|
|
)
|
|
|
|
|
|
- if len(chunk_json['choices']) == 0:
|
|
|
+ if not chunk_json or len(chunk_json['choices']) == 0:
|
|
|
continue
|
|
|
|
|
|
- delta = chunk_json['choices'][0]['delta']
|
|
|
- chunk_index = chunk_json['choices'][0]['index']
|
|
|
+ choice = chunk_json['choices'][0]
|
|
|
+ chunk_index = choice['index'] if 'index' in choice else chunk_index
|
|
|
|
|
|
- if delta.get('finish_reason') is None and (delta.get('content') is None or delta.get('content') == ''):
|
|
|
- continue
|
|
|
-
|
|
|
- assistant_message_tool_calls = delta.get('tool_calls', None)
|
|
|
- # assistant_message_function_call = delta.delta.function_call
|
|
|
-
|
|
|
- # extract tool calls from response
|
|
|
- if assistant_message_tool_calls:
|
|
|
- tool_calls = self._extract_response_tool_calls(assistant_message_tool_calls)
|
|
|
- # function_call = self._extract_response_function_call(assistant_message_function_call)
|
|
|
- # tool_calls = [function_call] if function_call else []
|
|
|
-
|
|
|
- # transform assistant message to prompt message
|
|
|
- assistant_prompt_message = AssistantPromptMessage(
|
|
|
- content=delta.get('content', ''),
|
|
|
- tool_calls=tool_calls if assistant_message_tool_calls else []
|
|
|
- )
|
|
|
+ if 'delta' in choice:
|
|
|
+ delta = choice['delta']
|
|
|
+ if delta.get('content') is None or delta.get('content') == '':
|
|
|
+ continue
|
|
|
+
|
|
|
+ assistant_message_tool_calls = delta.get('tool_calls', None)
|
|
|
+ # assistant_message_function_call = delta.delta.function_call
|
|
|
+
|
|
|
+ # extract tool calls from response
|
|
|
+ if assistant_message_tool_calls:
|
|
|
+ tool_calls = self._extract_response_tool_calls(assistant_message_tool_calls)
|
|
|
+ # function_call = self._extract_response_function_call(assistant_message_function_call)
|
|
|
+ # tool_calls = [function_call] if function_call else []
|
|
|
+
|
|
|
+ # transform assistant message to prompt message
|
|
|
+ assistant_prompt_message = AssistantPromptMessage(
|
|
|
+ content=delta.get('content', ''),
|
|
|
+ tool_calls=tool_calls if assistant_message_tool_calls else []
|
|
|
+ )
|
|
|
|
|
|
- full_assistant_content += delta.get('content', '')
|
|
|
+ full_assistant_content += delta.get('content', '')
|
|
|
+ elif 'text' in choice:
|
|
|
+ if choice.get('text') is None or choice.get('text') == '':
|
|
|
+ continue
|
|
|
+
|
|
|
+ # transform assistant message to prompt message
|
|
|
+ assistant_prompt_message = AssistantPromptMessage(
|
|
|
+ content=choice.get('text', '')
|
|
|
+ )
|
|
|
+
|
|
|
+ full_assistant_content += choice.get('text', '')
|
|
|
+ else:
|
|
|
+ continue
|
|
|
|
|
|
# check payload indicator for completion
|
|
|
if chunk_json['choices'][0].get('finish_reason') is not None:
|
|
|
-
|
|
|
yield create_final_llm_result_chunk(
|
|
|
index=chunk_index,
|
|
|
message=assistant_prompt_message,
|
|
|
finish_reason=chunk_json['choices'][0]['finish_reason']
|
|
|
)
|
|
|
-
|
|
|
else:
|
|
|
yield LLMResultChunk(
|
|
|
model=model,
|
|
@@ -373,10 +414,12 @@ class OAIAPICompatLargeLanguageModel(_CommonOAI_API_Compat, LargeLanguageModel):
|
|
|
message=AssistantPromptMessage(content=""),
|
|
|
finish_reason="End of stream."
|
|
|
)
|
|
|
-
|
|
|
- def _handle_generate_response(self, model: str, credentials: dict, response: requests.Response,
|
|
|
- prompt_messages: list[PromptMessage]) -> LLMResult:
|
|
|
-
|
|
|
+
|
|
|
+ chunk_index += 1
|
|
|
+
|
|
|
+ def _handle_generate_response(self, model: str, credentials: dict, response: requests.Response,
|
|
|
+ prompt_messages: list[PromptMessage]) -> LLMResult:
|
|
|
+
|
|
|
response_json = response.json()
|
|
|
|
|
|
completion_type = LLMMode.value_of(credentials['mode'])
|
|
@@ -455,7 +498,8 @@ class OAIAPICompatLargeLanguageModel(_CommonOAI_API_Compat, LargeLanguageModel):
|
|
|
message = cast(AssistantPromptMessage, message)
|
|
|
message_dict = {"role": "assistant", "content": message.content}
|
|
|
if message.tool_calls:
|
|
|
- message_dict["tool_calls"] = [helper.dump_model(PromptMessageFunction(function=tool_call)) for tool_call in
|
|
|
+ message_dict["tool_calls"] = [helper.dump_model(PromptMessageFunction(function=tool_call)) for tool_call
|
|
|
+ in
|
|
|
message.tool_calls]
|
|
|
# function_call = message.tool_calls[0]
|
|
|
# message_dict["function_call"] = {
|
|
@@ -484,7 +528,7 @@ class OAIAPICompatLargeLanguageModel(_CommonOAI_API_Compat, LargeLanguageModel):
|
|
|
message_dict["name"] = message.name
|
|
|
|
|
|
return message_dict
|
|
|
-
|
|
|
+
|
|
|
def _num_tokens_from_string(self, model: str, text: str,
|
|
|
tools: Optional[list[PromptMessageTool]] = None) -> int:
|
|
|
"""
|
|
@@ -507,10 +551,10 @@ class OAIAPICompatLargeLanguageModel(_CommonOAI_API_Compat, LargeLanguageModel):
|
|
|
"""
|
|
|
Approximate num tokens with GPT2 tokenizer.
|
|
|
"""
|
|
|
-
|
|
|
+
|
|
|
tokens_per_message = 3
|
|
|
tokens_per_name = 1
|
|
|
-
|
|
|
+
|
|
|
num_tokens = 0
|
|
|
messages_dict = [self._convert_prompt_message_to_dict(m) for m in messages]
|
|
|
for message in messages_dict:
|
|
@@ -599,7 +643,7 @@ class OAIAPICompatLargeLanguageModel(_CommonOAI_API_Compat, LargeLanguageModel):
|
|
|
num_tokens += self._get_num_tokens_by_gpt2(required_field)
|
|
|
|
|
|
return num_tokens
|
|
|
-
|
|
|
+
|
|
|
def _extract_response_tool_calls(self,
|
|
|
response_tool_calls: list[dict]) \
|
|
|
-> list[AssistantPromptMessage.ToolCall]:
|