Ver código fonte

feat(tools/cogview): Updated cogview tool to support cogview-3 and the latest cogview-3-plus (#8382)

Waffle 7 meses atrás
pai
commit
740fad06c1
100 arquivos alterados com 6230 adições e 366 exclusões
  1. 2 1
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/__init__.py
  2. 1 1
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/__version__.py
  3. 21 8
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/_client.py
  4. 32 3
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/__init__.py
  5. 3 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/assistant/__init__.py
  6. 122 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/assistant/assistant.py
  7. 146 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/batches.py
  8. 5 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/chat/__init__.py
  9. 64 27
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/chat/async_completions.py
  10. 8 7
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/chat/chat.py
  11. 59 21
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/chat/completions.py
  12. 8 5
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/embeddings.py
  13. 144 23
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/files.py
  14. 5 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/fine_tuning/__init__.py
  15. 9 6
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/fine_tuning/fine_tuning.py
  16. 3 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/fine_tuning/jobs/__init__.py
  17. 59 9
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/fine_tuning/jobs/jobs.py
  18. 3 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/fine_tuning/models/__init__.py
  19. 41 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/fine_tuning/models/fine_tuned_models.py
  20. 8 5
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/images.py
  21. 3 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/knowledge/__init__.py
  22. 3 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/knowledge/document/__init__.py
  23. 217 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/knowledge/document/document.py
  24. 173 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/knowledge/knowledge.py
  25. 3 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/tools/__init__.py
  26. 65 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/tools/tools.py
  27. 7 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/videos/__init__.py
  28. 77 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/videos/videos.py
  29. 108 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/core/__init__.py
  30. 1 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/core/_base_api.py
  31. 209 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/core/_base_compat.py
  32. 671 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/core/_base_models.py
  33. 81 18
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/core/_base_type.py
  34. 12 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/core/_constants.py
  35. 10 7
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/core/_errors.py
  36. 56 22
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/core/_files.py
  37. 650 106
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/core/_http_client.py
  38. 4 2
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/core/_jwt_token.py
  39. 207 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/core/_legacy_binary_response.py
  40. 341 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/core/_legacy_response.py
  41. 69 20
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/core/_request_opt.py
  42. 319 42
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/core/_response.py
  43. 67 1
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/core/_sse_client.py
  44. 0 19
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/core/_utils.py
  45. 52 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/core/_utils/__init__.py
  46. 383 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/core/_utils/_transform.py
  47. 122 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/core/_utils/_typing.py
  48. 409 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/core/_utils/_utils.py
  49. 78 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/core/logs.py
  50. 62 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/core/pagination.py
  51. 5 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/assistant/__init__.py
  52. 40 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/assistant/assistant_completion.py
  53. 7 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/assistant/assistant_conversation_params.py
  54. 29 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/assistant/assistant_conversation_resp.py
  55. 32 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/assistant/assistant_create_params.py
  56. 21 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/assistant/assistant_support_resp.py
  57. 3 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/assistant/message/__init__.py
  58. 13 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/assistant/message/message_content.py
  59. 14 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/assistant/message/text_content_block.py
  60. 27 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/assistant/message/tools/code_interpreter_delta_block.py
  61. 21 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/assistant/message/tools/drawing_tool_delta_block.py
  62. 22 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/assistant/message/tools/function_delta_block.py
  63. 41 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/assistant/message/tools/retrieval_delta_black.py
  64. 16 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/assistant/message/tools/tools_type.py
  65. 48 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/assistant/message/tools/web_browser_delta_block.py
  66. 16 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/assistant/message/tools_delta_block.py
  67. 82 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/batch.py
  68. 37 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/batch_create_params.py
  69. 21 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/batch_error.py
  70. 20 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/batch_list_params.py
  71. 14 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/batch_request_counts.py
  72. 2 3
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/chat/async_chat_completion.py
  73. 1 1
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/chat/chat_completion.py
  74. 4 2
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/chat/chat_completion_chunk.py
  75. 146 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/chat/code_geex/code_geex_params.py
  76. 1 2
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/embeddings.py
  77. 5 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/files/__init__.py
  78. 38 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/files/file_create_params.py
  79. 13 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/files/file_deleted.py
  80. 2 2
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/files/file_object.py
  81. 13 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/files/upload_detail.py
  82. 1 1
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/fine_tuning/fine_tuning_job.py
  83. 1 1
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/fine_tuning/fine_tuning_job_event.py
  84. 1 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/fine_tuning/models/__init__.py
  85. 13 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/fine_tuning/models/fine_tuned_models.py
  86. 1 1
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/image.py
  87. 8 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/knowledge/__init__.py
  88. 8 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/knowledge/document/__init__.py
  89. 51 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/knowledge/document/document.py
  90. 29 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/knowledge/document/document_edit_params.py
  91. 26 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/knowledge/document/document_list_params.py
  92. 11 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/knowledge/document/document_list_resp.py
  93. 21 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/knowledge/knowledge.py
  94. 30 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/knowledge/knowledge_create_params.py
  95. 15 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/knowledge/knowledge_list_params.py
  96. 11 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/knowledge/knowledge_list_resp.py
  97. 21 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/knowledge/knowledge_used.py
  98. 3 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/sensitive_word_check/__init__.py
  99. 14 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/sensitive_word_check/sensitive_word_check.py
  100. 9 0
      api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/tools/__init__.py

+ 2 - 1
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/__init__.py

@@ -1,7 +1,8 @@
 from .__version__ import __version__
 from ._client import ZhipuAI
-from .core._errors import (
+from .core import (
     APIAuthenticationError,
+    APIConnectionError,
     APIInternalError,
     APIReachLimitError,
     APIRequestFailedError,

+ 1 - 1
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/__version__.py

@@ -1 +1 @@
-__version__ = "v2.0.1"
+__version__ = "v2.1.0"

+ 21 - 8
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/_client.py

@@ -9,15 +9,13 @@ from httpx import Timeout
 from typing_extensions import override
 
 from . import api_resource
-from .core import _jwt_token
-from .core._base_type import NOT_GIVEN, NotGiven
-from .core._errors import ZhipuAIError
-from .core._http_client import ZHIPUAI_DEFAULT_MAX_RETRIES, HttpClient
+from .core import NOT_GIVEN, ZHIPUAI_DEFAULT_MAX_RETRIES, HttpClient, NotGiven, ZhipuAIError, _jwt_token
 
 
 class ZhipuAI(HttpClient):
-    chat: api_resource.chat
+    chat: api_resource.chat.Chat
     api_key: str
+    _disable_token_cache: bool = True
 
     def __init__(
         self,
@@ -28,10 +26,15 @@ class ZhipuAI(HttpClient):
         max_retries: int = ZHIPUAI_DEFAULT_MAX_RETRIES,
         http_client: httpx.Client | None = None,
         custom_headers: Mapping[str, str] | None = None,
+        disable_token_cache: bool = True,
+        _strict_response_validation: bool = False,
     ) -> None:
         if api_key is None:
-            raise ZhipuAIError("No api_key provided, please provide it through parameters or environment variables")
+            api_key = os.environ.get("ZHIPUAI_API_KEY")
+        if api_key is None:
+            raise ZhipuAIError("未提供api_key,请通过参数或环境变量提供")
         self.api_key = api_key
+        self._disable_token_cache = disable_token_cache
 
         if base_url is None:
             base_url = os.environ.get("ZHIPUAI_BASE_URL")
@@ -42,21 +45,31 @@ class ZhipuAI(HttpClient):
         super().__init__(
             version=__version__,
             base_url=base_url,
+            max_retries=max_retries,
             timeout=timeout,
             custom_httpx_client=http_client,
             custom_headers=custom_headers,
+            _strict_response_validation=_strict_response_validation,
         )
         self.chat = api_resource.chat.Chat(self)
         self.images = api_resource.images.Images(self)
         self.embeddings = api_resource.embeddings.Embeddings(self)
         self.files = api_resource.files.Files(self)
         self.fine_tuning = api_resource.fine_tuning.FineTuning(self)
+        self.batches = api_resource.Batches(self)
+        self.knowledge = api_resource.Knowledge(self)
+        self.tools = api_resource.Tools(self)
+        self.videos = api_resource.Videos(self)
+        self.assistant = api_resource.Assistant(self)
 
     @property
     @override
-    def _auth_headers(self) -> dict[str, str]:
+    def auth_headers(self) -> dict[str, str]:
         api_key = self.api_key
-        return {"Authorization": f"{_jwt_token.generate_token(api_key)}"}
+        if self._disable_token_cache:
+            return {"Authorization": f"Bearer {api_key}"}
+        else:
+            return {"Authorization": f"Bearer {_jwt_token.generate_token(api_key)}"}
 
     def __del__(self) -> None:
         if not hasattr(self, "_has_custom_http_client") or not hasattr(self, "close") or not hasattr(self, "_client"):

+ 32 - 3
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/__init__.py

@@ -1,5 +1,34 @@
-from .chat import chat
+from .assistant import (
+    Assistant,
+)
+from .batches import Batches
+from .chat import (
+    AsyncCompletions,
+    Chat,
+    Completions,
+)
 from .embeddings import Embeddings
-from .files import Files
-from .fine_tuning import fine_tuning
+from .files import Files, FilesWithRawResponse
+from .fine_tuning import FineTuning
 from .images import Images
+from .knowledge import Knowledge
+from .tools import Tools
+from .videos import (
+    Videos,
+)
+
+__all__ = [
+    "Videos",
+    "AsyncCompletions",
+    "Chat",
+    "Completions",
+    "Images",
+    "Embeddings",
+    "Files",
+    "FilesWithRawResponse",
+    "FineTuning",
+    "Batches",
+    "Knowledge",
+    "Tools",
+    "Assistant",
+]

+ 3 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/assistant/__init__.py

@@ -0,0 +1,3 @@
+from .assistant import Assistant
+
+__all__ = ["Assistant"]

+ 122 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/assistant/assistant.py

@@ -0,0 +1,122 @@
+from __future__ import annotations
+
+from typing import TYPE_CHECKING, Optional
+
+import httpx
+
+from ...core import (
+    NOT_GIVEN,
+    BaseAPI,
+    Body,
+    Headers,
+    NotGiven,
+    StreamResponse,
+    deepcopy_minimal,
+    make_request_options,
+    maybe_transform,
+)
+from ...types.assistant import AssistantCompletion
+from ...types.assistant.assistant_conversation_resp import ConversationUsageListResp
+from ...types.assistant.assistant_support_resp import AssistantSupportResp
+
+if TYPE_CHECKING:
+    from ..._client import ZhipuAI
+
+from ...types.assistant import assistant_conversation_params, assistant_create_params
+
+__all__ = ["Assistant"]
+
+
+class Assistant(BaseAPI):
+    def __init__(self, client: ZhipuAI) -> None:
+        super().__init__(client)
+
+    def conversation(
+        self,
+        assistant_id: str,
+        model: str,
+        messages: list[assistant_create_params.ConversationMessage],
+        *,
+        stream: bool = True,
+        conversation_id: Optional[str] = None,
+        attachments: Optional[list[assistant_create_params.AssistantAttachments]] = None,
+        metadata: dict | None = None,
+        request_id: str = None,
+        user_id: str = None,
+        extra_headers: Headers | None = None,
+        extra_body: Body | None = None,
+        timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+    ) -> StreamResponse[AssistantCompletion]:
+        body = deepcopy_minimal(
+            {
+                "assistant_id": assistant_id,
+                "model": model,
+                "messages": messages,
+                "stream": stream,
+                "conversation_id": conversation_id,
+                "attachments": attachments,
+                "metadata": metadata,
+                "request_id": request_id,
+                "user_id": user_id,
+            }
+        )
+        return self._post(
+            "/assistant",
+            body=maybe_transform(body, assistant_create_params.AssistantParameters),
+            options=make_request_options(extra_headers=extra_headers, extra_body=extra_body, timeout=timeout),
+            cast_type=AssistantCompletion,
+            stream=stream or True,
+            stream_cls=StreamResponse[AssistantCompletion],
+        )
+
+    def query_support(
+        self,
+        *,
+        assistant_id_list: list[str] = None,
+        request_id: str = None,
+        user_id: str = None,
+        extra_headers: Headers | None = None,
+        extra_body: Body | None = None,
+        timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+    ) -> AssistantSupportResp:
+        body = deepcopy_minimal(
+            {
+                "assistant_id_list": assistant_id_list,
+                "request_id": request_id,
+                "user_id": user_id,
+            }
+        )
+        return self._post(
+            "/assistant/list",
+            body=body,
+            options=make_request_options(extra_headers=extra_headers, extra_body=extra_body, timeout=timeout),
+            cast_type=AssistantSupportResp,
+        )
+
+    def query_conversation_usage(
+        self,
+        assistant_id: str,
+        page: int = 1,
+        page_size: int = 10,
+        *,
+        request_id: str = None,
+        user_id: str = None,
+        extra_headers: Headers | None = None,
+        extra_body: Body | None = None,
+        timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+    ) -> ConversationUsageListResp:
+        body = deepcopy_minimal(
+            {
+                "assistant_id": assistant_id,
+                "page": page,
+                "page_size": page_size,
+                "request_id": request_id,
+                "user_id": user_id,
+            }
+        )
+        return self._post(
+            "/assistant/conversation/list",
+            body=maybe_transform(body, assistant_conversation_params.ConversationParameters),
+            options=make_request_options(extra_headers=extra_headers, extra_body=extra_body, timeout=timeout),
+            cast_type=ConversationUsageListResp,
+        )

+ 146 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/batches.py

@@ -0,0 +1,146 @@
+from __future__ import annotations
+
+from typing import TYPE_CHECKING, Literal, Optional
+
+import httpx
+
+from ..core import NOT_GIVEN, BaseAPI, Body, Headers, NotGiven, make_request_options, maybe_transform
+from ..core.pagination import SyncCursorPage
+from ..types import batch_create_params, batch_list_params
+from ..types.batch import Batch
+
+if TYPE_CHECKING:
+    from .._client import ZhipuAI
+
+
+class Batches(BaseAPI):
+    def __init__(self, client: ZhipuAI) -> None:
+        super().__init__(client)
+
+    def create(
+        self,
+        *,
+        completion_window: str | None = None,
+        endpoint: Literal["/v1/chat/completions", "/v1/embeddings"],
+        input_file_id: str,
+        metadata: Optional[dict[str, str]] | NotGiven = NOT_GIVEN,
+        auto_delete_input_file: bool = True,
+        extra_headers: Headers | None = None,
+        extra_body: Body | None = None,
+        timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+    ) -> Batch:
+        return self._post(
+            "/batches",
+            body=maybe_transform(
+                {
+                    "completion_window": completion_window,
+                    "endpoint": endpoint,
+                    "input_file_id": input_file_id,
+                    "metadata": metadata,
+                    "auto_delete_input_file": auto_delete_input_file,
+                },
+                batch_create_params.BatchCreateParams,
+            ),
+            options=make_request_options(extra_headers=extra_headers, extra_body=extra_body, timeout=timeout),
+            cast_type=Batch,
+        )
+
+    def retrieve(
+        self,
+        batch_id: str,
+        *,
+        extra_headers: Headers | None = None,
+        extra_body: Body | None = None,
+        timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+    ) -> Batch:
+        """
+        Retrieves a batch.
+
+        Args:
+          extra_headers: Send extra headers
+
+          extra_body: Add additional JSON properties to the request
+
+          timeout: Override the client-level default timeout for this request, in seconds
+        """
+        if not batch_id:
+            raise ValueError(f"Expected a non-empty value for `batch_id` but received {batch_id!r}")
+        return self._get(
+            f"/batches/{batch_id}",
+            options=make_request_options(extra_headers=extra_headers, extra_body=extra_body, timeout=timeout),
+            cast_type=Batch,
+        )
+
+    def list(
+        self,
+        *,
+        after: str | NotGiven = NOT_GIVEN,
+        limit: int | NotGiven = NOT_GIVEN,
+        extra_headers: Headers | None = None,
+        extra_body: Body | None = None,
+        timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+    ) -> SyncCursorPage[Batch]:
+        """List your organization's batches.
+
+        Args:
+          after: A cursor for use in pagination.
+
+            `after` is an object ID that defines your place
+              in the list. For instance, if you make a list request and receive 100 objects,
+              ending with obj_foo, your subsequent call can include after=obj_foo in order to
+              fetch the next page of the list.
+
+          limit: A limit on the number of objects to be returned. Limit can range between 1 and
+              100, and the default is 20.
+
+          extra_headers: Send extra headers
+
+          extra_body: Add additional JSON properties to the request
+
+          timeout: Override the client-level default timeout for this request, in seconds
+        """
+        return self._get_api_list(
+            "/batches",
+            page=SyncCursorPage[Batch],
+            options=make_request_options(
+                extra_headers=extra_headers,
+                extra_body=extra_body,
+                timeout=timeout,
+                query=maybe_transform(
+                    {
+                        "after": after,
+                        "limit": limit,
+                    },
+                    batch_list_params.BatchListParams,
+                ),
+            ),
+            model=Batch,
+        )
+
+    def cancel(
+        self,
+        batch_id: str,
+        *,
+        extra_headers: Headers | None = None,
+        extra_body: Body | None = None,
+        timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+    ) -> Batch:
+        """
+        Cancels an in-progress batch.
+
+        Args:
+          batch_id: The ID of the batch to cancel.
+          extra_headers: Send extra headers
+
+          extra_body: Add additional JSON properties to the request
+
+          timeout: Override the client-level default timeout for this request, in seconds
+
+        """
+        if not batch_id:
+            raise ValueError(f"Expected a non-empty value for `batch_id` but received {batch_id!r}")
+        return self._post(
+            f"/batches/{batch_id}/cancel",
+            options=make_request_options(extra_headers=extra_headers, extra_body=extra_body, timeout=timeout),
+            cast_type=Batch,
+        )

+ 5 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/chat/__init__.py

@@ -0,0 +1,5 @@
+from .async_completions import AsyncCompletions
+from .chat import Chat
+from .completions import Completions
+
+__all__ = ["AsyncCompletions", "Chat", "Completions"]

+ 64 - 27
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/chat/async_completions.py

@@ -1,13 +1,25 @@
 from __future__ import annotations
 
+import logging
 from typing import TYPE_CHECKING, Literal, Optional, Union
 
 import httpx
 
-from ...core._base_api import BaseAPI
-from ...core._base_type import NOT_GIVEN, Headers, NotGiven
-from ...core._http_client import make_user_request_input
+from ...core import (
+    NOT_GIVEN,
+    BaseAPI,
+    Body,
+    Headers,
+    NotGiven,
+    drop_prefix_image_data,
+    make_request_options,
+    maybe_transform,
+)
 from ...types.chat.async_chat_completion import AsyncCompletion, AsyncTaskStatus
+from ...types.chat.code_geex import code_geex_params
+from ...types.sensitive_word_check import SensitiveWordCheckRequest
+
+logger = logging.getLogger(__name__)
 
 if TYPE_CHECKING:
     from ..._client import ZhipuAI
@@ -22,6 +34,7 @@ class AsyncCompletions(BaseAPI):
         *,
         model: str,
         request_id: Optional[str] | NotGiven = NOT_GIVEN,
+        user_id: Optional[str] | NotGiven = NOT_GIVEN,
         do_sample: Optional[Literal[False]] | Literal[True] | NotGiven = NOT_GIVEN,
         temperature: Optional[float] | NotGiven = NOT_GIVEN,
         top_p: Optional[float] | NotGiven = NOT_GIVEN,
@@ -29,50 +42,74 @@ class AsyncCompletions(BaseAPI):
         seed: int | NotGiven = NOT_GIVEN,
         messages: Union[str, list[str], list[int], list[list[int]], None],
         stop: Optional[Union[str, list[str], None]] | NotGiven = NOT_GIVEN,
-        sensitive_word_check: Optional[object] | NotGiven = NOT_GIVEN,
+        sensitive_word_check: Optional[SensitiveWordCheckRequest] | NotGiven = NOT_GIVEN,
         tools: Optional[object] | NotGiven = NOT_GIVEN,
         tool_choice: str | NotGiven = NOT_GIVEN,
+        meta: Optional[dict[str, str]] | NotGiven = NOT_GIVEN,
+        extra: Optional[code_geex_params.CodeGeexExtra] | NotGiven = NOT_GIVEN,
         extra_headers: Headers | None = None,
-        disable_strict_validation: Optional[bool] | None = None,
+        extra_body: Body | None = None,
         timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
     ) -> AsyncTaskStatus:
         _cast_type = AsyncTaskStatus
+        logger.debug(f"temperature:{temperature}, top_p:{top_p}")
+        if temperature is not None and temperature != NOT_GIVEN:
+            if temperature <= 0:
+                do_sample = False
+                temperature = 0.01
+                # logger.warning("temperature:取值范围是:(0.0, 1.0) 开区间,do_sample重写为:false(参数top_p temperture不生效)")  # noqa: E501
+            if temperature >= 1:
+                temperature = 0.99
+                # logger.warning("temperature:取值范围是:(0.0, 1.0) 开区间")
+        if top_p is not None and top_p != NOT_GIVEN:
+            if top_p >= 1:
+                top_p = 0.99
+                # logger.warning("top_p:取值范围是:(0.0, 1.0) 开区间,不能等于 0 或 1")
+            if top_p <= 0:
+                top_p = 0.01
+                # logger.warning("top_p:取值范围是:(0.0, 1.0) 开区间,不能等于 0 或 1")
+
+        logger.debug(f"temperature:{temperature}, top_p:{top_p}")
+        if isinstance(messages, list):
+            for item in messages:
+                if item.get("content"):
+                    item["content"] = drop_prefix_image_data(item["content"])
 
-        if disable_strict_validation:
-            _cast_type = object
+        body = {
+            "model": model,
+            "request_id": request_id,
+            "user_id": user_id,
+            "temperature": temperature,
+            "top_p": top_p,
+            "do_sample": do_sample,
+            "max_tokens": max_tokens,
+            "seed": seed,
+            "messages": messages,
+            "stop": stop,
+            "sensitive_word_check": sensitive_word_check,
+            "tools": tools,
+            "tool_choice": tool_choice,
+            "meta": meta,
+            "extra": maybe_transform(extra, code_geex_params.CodeGeexExtra),
+        }
         return self._post(
             "/async/chat/completions",
-            body={
-                "model": model,
-                "request_id": request_id,
-                "temperature": temperature,
-                "top_p": top_p,
-                "do_sample": do_sample,
-                "max_tokens": max_tokens,
-                "seed": seed,
-                "messages": messages,
-                "stop": stop,
-                "sensitive_word_check": sensitive_word_check,
-                "tools": tools,
-                "tool_choice": tool_choice,
-            },
-            options=make_user_request_input(extra_headers=extra_headers, timeout=timeout),
+            body=body,
+            options=make_request_options(extra_headers=extra_headers, extra_body=extra_body, timeout=timeout),
             cast_type=_cast_type,
-            enable_stream=False,
+            stream=False,
         )
 
     def retrieve_completion_result(
         self,
         id: str,
         extra_headers: Headers | None = None,
-        disable_strict_validation: Optional[bool] | None = None,
+        extra_body: Body | None = None,
         timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
     ) -> Union[AsyncCompletion, AsyncTaskStatus]:
         _cast_type = Union[AsyncCompletion, AsyncTaskStatus]
-        if disable_strict_validation:
-            _cast_type = object
         return self._get(
             path=f"/async-result/{id}",
             cast_type=_cast_type,
-            options=make_user_request_input(extra_headers=extra_headers, timeout=timeout),
+            options=make_request_options(extra_headers=extra_headers, extra_body=extra_body, timeout=timeout),
         )

+ 8 - 7
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/chat/chat.py

@@ -1,17 +1,18 @@
 from typing import TYPE_CHECKING
 
-from ...core._base_api import BaseAPI
+from ...core import BaseAPI, cached_property
 from .async_completions import AsyncCompletions
 from .completions import Completions
 
 if TYPE_CHECKING:
-    from ..._client import ZhipuAI
+    pass
 
 
 class Chat(BaseAPI):
-    completions: Completions
+    @cached_property
+    def completions(self) -> Completions:
+        return Completions(self._client)
 
-    def __init__(self, client: "ZhipuAI") -> None:
-        super().__init__(client)
-        self.completions = Completions(client)
-        self.asyncCompletions = AsyncCompletions(client)
+    @cached_property
+    def asyncCompletions(self) -> AsyncCompletions:  # noqa: N802
+        return AsyncCompletions(self._client)

+ 59 - 21
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/chat/completions.py

@@ -1,15 +1,28 @@
 from __future__ import annotations
 
+import logging
 from typing import TYPE_CHECKING, Literal, Optional, Union
 
 import httpx
 
-from ...core._base_api import BaseAPI
-from ...core._base_type import NOT_GIVEN, Headers, NotGiven
-from ...core._http_client import make_user_request_input
-from ...core._sse_client import StreamResponse
+from ...core import (
+    NOT_GIVEN,
+    BaseAPI,
+    Body,
+    Headers,
+    NotGiven,
+    StreamResponse,
+    deepcopy_minimal,
+    drop_prefix_image_data,
+    make_request_options,
+    maybe_transform,
+)
 from ...types.chat.chat_completion import Completion
 from ...types.chat.chat_completion_chunk import ChatCompletionChunk
+from ...types.chat.code_geex import code_geex_params
+from ...types.sensitive_word_check import SensitiveWordCheckRequest
+
+logger = logging.getLogger(__name__)
 
 if TYPE_CHECKING:
     from ..._client import ZhipuAI
@@ -24,6 +37,7 @@ class Completions(BaseAPI):
         *,
         model: str,
         request_id: Optional[str] | NotGiven = NOT_GIVEN,
+        user_id: Optional[str] | NotGiven = NOT_GIVEN,
         do_sample: Optional[Literal[False]] | Literal[True] | NotGiven = NOT_GIVEN,
         stream: Optional[Literal[False]] | Literal[True] | NotGiven = NOT_GIVEN,
         temperature: Optional[float] | NotGiven = NOT_GIVEN,
@@ -32,23 +46,43 @@ class Completions(BaseAPI):
         seed: int | NotGiven = NOT_GIVEN,
         messages: Union[str, list[str], list[int], object, None],
         stop: Optional[Union[str, list[str], None]] | NotGiven = NOT_GIVEN,
-        sensitive_word_check: Optional[object] | NotGiven = NOT_GIVEN,
+        sensitive_word_check: Optional[SensitiveWordCheckRequest] | NotGiven = NOT_GIVEN,
         tools: Optional[object] | NotGiven = NOT_GIVEN,
         tool_choice: str | NotGiven = NOT_GIVEN,
+        meta: Optional[dict[str, str]] | NotGiven = NOT_GIVEN,
+        extra: Optional[code_geex_params.CodeGeexExtra] | NotGiven = NOT_GIVEN,
         extra_headers: Headers | None = None,
-        disable_strict_validation: Optional[bool] | None = None,
+        extra_body: Body | None = None,
         timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
     ) -> Completion | StreamResponse[ChatCompletionChunk]:
-        _cast_type = Completion
-        _stream_cls = StreamResponse[ChatCompletionChunk]
-        if disable_strict_validation:
-            _cast_type = object
-            _stream_cls = StreamResponse[object]
-        return self._post(
-            "/chat/completions",
-            body={
+        logger.debug(f"temperature:{temperature}, top_p:{top_p}")
+        if temperature is not None and temperature != NOT_GIVEN:
+            if temperature <= 0:
+                do_sample = False
+                temperature = 0.01
+                # logger.warning("temperature:取值范围是:(0.0, 1.0) 开区间,do_sample重写为:false(参数top_p temperture不生效)")  # noqa: E501
+            if temperature >= 1:
+                temperature = 0.99
+                # logger.warning("temperature:取值范围是:(0.0, 1.0) 开区间")
+        if top_p is not None and top_p != NOT_GIVEN:
+            if top_p >= 1:
+                top_p = 0.99
+                # logger.warning("top_p:取值范围是:(0.0, 1.0) 开区间,不能等于 0 或 1")
+            if top_p <= 0:
+                top_p = 0.01
+                # logger.warning("top_p:取值范围是:(0.0, 1.0) 开区间,不能等于 0 或 1")
+
+        logger.debug(f"temperature:{temperature}, top_p:{top_p}")
+        if isinstance(messages, list):
+            for item in messages:
+                if item.get("content"):
+                    item["content"] = drop_prefix_image_data(item["content"])
+
+        body = deepcopy_minimal(
+            {
                 "model": model,
                 "request_id": request_id,
+                "user_id": user_id,
                 "temperature": temperature,
                 "top_p": top_p,
                 "do_sample": do_sample,
@@ -60,11 +94,15 @@ class Completions(BaseAPI):
                 "stream": stream,
                 "tools": tools,
                 "tool_choice": tool_choice,
-            },
-            options=make_user_request_input(
-                extra_headers=extra_headers,
-            ),
-            cast_type=_cast_type,
-            enable_stream=stream or False,
-            stream_cls=_stream_cls,
+                "meta": meta,
+                "extra": maybe_transform(extra, code_geex_params.CodeGeexExtra),
+            }
+        )
+        return self._post(
+            "/chat/completions",
+            body=body,
+            options=make_request_options(extra_headers=extra_headers, extra_body=extra_body, timeout=timeout),
+            cast_type=Completion,
+            stream=stream or False,
+            stream_cls=StreamResponse[ChatCompletionChunk],
         )

+ 8 - 5
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/embeddings.py

@@ -4,9 +4,7 @@ from typing import TYPE_CHECKING, Optional, Union
 
 import httpx
 
-from ..core._base_api import BaseAPI
-from ..core._base_type import NOT_GIVEN, Headers, NotGiven
-from ..core._http_client import make_user_request_input
+from ..core import NOT_GIVEN, BaseAPI, Body, Headers, NotGiven, make_request_options
 from ..types.embeddings import EmbeddingsResponded
 
 if TYPE_CHECKING:
@@ -22,10 +20,13 @@ class Embeddings(BaseAPI):
         *,
         input: Union[str, list[str], list[int], list[list[int]]],
         model: Union[str],
+        dimensions: Union[int] | NotGiven = NOT_GIVEN,
         encoding_format: str | NotGiven = NOT_GIVEN,
         user: str | NotGiven = NOT_GIVEN,
+        request_id: Optional[str] | NotGiven = NOT_GIVEN,
         sensitive_word_check: Optional[object] | NotGiven = NOT_GIVEN,
         extra_headers: Headers | None = None,
+        extra_body: Body | None = None,
         disable_strict_validation: Optional[bool] | None = None,
         timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
     ) -> EmbeddingsResponded:
@@ -37,11 +38,13 @@ class Embeddings(BaseAPI):
             body={
                 "input": input,
                 "model": model,
+                "dimensions": dimensions,
                 "encoding_format": encoding_format,
                 "user": user,
+                "request_id": request_id,
                 "sensitive_word_check": sensitive_word_check,
             },
-            options=make_user_request_input(extra_headers=extra_headers, timeout=timeout),
+            options=make_request_options(extra_headers=extra_headers, extra_body=extra_body, timeout=timeout),
             cast_type=_cast_type,
-            enable_stream=False,
+            stream=False,
         )

+ 144 - 23
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/files.py

@@ -1,19 +1,30 @@
 from __future__ import annotations
 
-from typing import TYPE_CHECKING
+from collections.abc import Mapping
+from typing import TYPE_CHECKING, Literal, cast
 
 import httpx
 
-from ..core._base_api import BaseAPI
-from ..core._base_type import NOT_GIVEN, FileTypes, Headers, NotGiven
-from ..core._files import is_file_content
-from ..core._http_client import make_user_request_input
-from ..types.file_object import FileObject, ListOfFileObject
+from ..core import (
+    NOT_GIVEN,
+    BaseAPI,
+    Body,
+    FileTypes,
+    Headers,
+    NotGiven,
+    _legacy_binary_response,
+    _legacy_response,
+    deepcopy_minimal,
+    extract_files,
+    make_request_options,
+    maybe_transform,
+)
+from ..types.files import FileDeleted, FileObject, ListOfFileObject, UploadDetail, file_create_params
 
 if TYPE_CHECKING:
     from .._client import ZhipuAI
 
-__all__ = ["Files"]
+__all__ = ["Files", "FilesWithRawResponse"]
 
 
 class Files(BaseAPI):
@@ -23,30 +34,69 @@ class Files(BaseAPI):
     def create(
         self,
         *,
-        file: FileTypes,
-        purpose: str,
+        file: FileTypes = None,
+        upload_detail: list[UploadDetail] = None,
+        purpose: Literal["fine-tune", "retrieval", "batch"],
+        knowledge_id: str = None,
+        sentence_size: int = None,
         extra_headers: Headers | None = None,
+        extra_body: Body | None = None,
         timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
     ) -> FileObject:
-        if not is_file_content(file):
-            prefix = f"Expected file input `{file!r}`"
-            raise RuntimeError(
-                f"{prefix} to be bytes, an io.IOBase instance, PathLike or a tuple but received {type(file)} instead."
-            ) from None
-        files = [("file", file)]
-
-        extra_headers = {"Content-Type": "multipart/form-data", **(extra_headers or {})}
-
+        if not file and not upload_detail:
+            raise ValueError("At least one of `file` and `upload_detail` must be provided.")
+        body = deepcopy_minimal(
+            {
+                "file": file,
+                "upload_detail": upload_detail,
+                "purpose": purpose,
+                "knowledge_id": knowledge_id,
+                "sentence_size": sentence_size,
+            }
+        )
+        files = extract_files(cast(Mapping[str, object], body), paths=[["file"]])
+        if files:
+            # It should be noted that the actual Content-Type header that will be
+            # sent to the server will contain a `boundary` parameter, e.g.
+            # multipart/form-data; boundary=---abc--
+            extra_headers = {"Content-Type": "multipart/form-data", **(extra_headers or {})}
         return self._post(
             "/files",
-            body={
-                "purpose": purpose,
-            },
+            body=maybe_transform(body, file_create_params.FileCreateParams),
             files=files,
-            options=make_user_request_input(extra_headers=extra_headers, timeout=timeout),
+            options=make_request_options(extra_headers=extra_headers, extra_body=extra_body, timeout=timeout),
             cast_type=FileObject,
         )
 
+    # def retrieve(
+    #         self,
+    #         file_id: str,
+    #         *,
+    #         extra_headers: Headers | None = None,
+    #         extra_body: Body | None = None,
+    #         timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+    # ) -> FileObject:
+    #     """
+    #     Returns information about a specific file.
+    #
+    #     Args:
+    #       file_id: The ID of the file to retrieve information about
+    #       extra_headers: Send extra headers
+    #
+    #       extra_body: Add additional JSON properties to the request
+    #
+    #       timeout: Override the client-level default timeout for this request, in seconds
+    #     """
+    #     if not file_id:
+    #         raise ValueError(f"Expected a non-empty value for `file_id` but received {file_id!r}")
+    #     return self._get(
+    #         f"/files/{file_id}",
+    #         options=make_request_options(
+    #             extra_headers=extra_headers, extra_body=extra_body, timeout=timeout
+    #         ),
+    #         cast_type=FileObject,
+    #     )
+
     def list(
         self,
         *,
@@ -55,13 +105,15 @@ class Files(BaseAPI):
         after: str | NotGiven = NOT_GIVEN,
         order: str | NotGiven = NOT_GIVEN,
         extra_headers: Headers | None = None,
+        extra_body: Body | None = None,
         timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
     ) -> ListOfFileObject:
         return self._get(
             "/files",
             cast_type=ListOfFileObject,
-            options=make_user_request_input(
+            options=make_request_options(
                 extra_headers=extra_headers,
+                extra_body=extra_body,
                 timeout=timeout,
                 query={
                     "purpose": purpose,
@@ -71,3 +123,72 @@ class Files(BaseAPI):
                 },
             ),
         )
+
+    def delete(
+        self,
+        file_id: str,
+        *,
+        extra_headers: Headers | None = None,
+        extra_body: Body | None = None,
+        timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+    ) -> FileDeleted:
+        """
+        Delete a file.
+
+        Args:
+          file_id: The ID of the file to delete
+          extra_headers: Send extra headers
+
+          extra_body: Add additional JSON properties to the request
+
+          timeout: Override the client-level default timeout for this request, in seconds
+        """
+        if not file_id:
+            raise ValueError(f"Expected a non-empty value for `file_id` but received {file_id!r}")
+        return self._delete(
+            f"/files/{file_id}",
+            options=make_request_options(extra_headers=extra_headers, extra_body=extra_body, timeout=timeout),
+            cast_type=FileDeleted,
+        )
+
+    def content(
+        self,
+        file_id: str,
+        *,
+        extra_headers: Headers | None = None,
+        extra_body: Body | None = None,
+        timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+    ) -> _legacy_response.HttpxBinaryResponseContent:
+        """
+        Returns the contents of the specified file.
+
+        Args:
+          extra_headers: Send extra headers
+
+          extra_body: Add additional JSON properties to the request
+
+          timeout: Override the client-level default timeout for this request, in seconds
+        """
+        if not file_id:
+            raise ValueError(f"Expected a non-empty value for `file_id` but received {file_id!r}")
+        extra_headers = {"Accept": "application/binary", **(extra_headers or {})}
+        return self._get(
+            f"/files/{file_id}/content",
+            options=make_request_options(extra_headers=extra_headers, extra_body=extra_body, timeout=timeout),
+            cast_type=_legacy_binary_response.HttpxBinaryResponseContent,
+        )
+
+
+class FilesWithRawResponse:
+    def __init__(self, files: Files) -> None:
+        self._files = files
+
+        self.create = _legacy_response.to_raw_response_wrapper(
+            files.create,
+        )
+        self.list = _legacy_response.to_raw_response_wrapper(
+            files.list,
+        )
+        self.content = _legacy_response.to_raw_response_wrapper(
+            files.content,
+        )

+ 5 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/fine_tuning/__init__.py

@@ -0,0 +1,5 @@
+from .fine_tuning import FineTuning
+from .jobs import Jobs
+from .models import FineTunedModels
+
+__all__ = ["Jobs", "FineTunedModels", "FineTuning"]

+ 9 - 6
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/fine_tuning/fine_tuning.py

@@ -1,15 +1,18 @@
 from typing import TYPE_CHECKING
 
-from ...core._base_api import BaseAPI
+from ...core import BaseAPI, cached_property
 from .jobs import Jobs
+from .models import FineTunedModels
 
 if TYPE_CHECKING:
-    from ..._client import ZhipuAI
+    pass
 
 
 class FineTuning(BaseAPI):
-    jobs: Jobs
+    @cached_property
+    def jobs(self) -> Jobs:
+        return Jobs(self._client)
 
-    def __init__(self, client: "ZhipuAI") -> None:
-        super().__init__(client)
-        self.jobs = Jobs(client)
+    @cached_property
+    def models(self) -> FineTunedModels:
+        return FineTunedModels(self._client)

+ 3 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/fine_tuning/jobs/__init__.py

@@ -0,0 +1,3 @@
+from .jobs import Jobs
+
+__all__ = ["Jobs"]

+ 59 - 9
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/fine_tuning/jobs.py → api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/fine_tuning/jobs/jobs.py

@@ -4,13 +4,23 @@ from typing import TYPE_CHECKING, Optional
 
 import httpx
 
-from ...core._base_api import BaseAPI
-from ...core._base_type import NOT_GIVEN, Headers, NotGiven
-from ...core._http_client import make_user_request_input
-from ...types.fine_tuning import FineTuningJob, FineTuningJobEvent, ListOfFineTuningJob, job_create_params
+from ....core import (
+    NOT_GIVEN,
+    BaseAPI,
+    Body,
+    Headers,
+    NotGiven,
+    make_request_options,
+)
+from ....types.fine_tuning import (
+    FineTuningJob,
+    FineTuningJobEvent,
+    ListOfFineTuningJob,
+    job_create_params,
+)
 
 if TYPE_CHECKING:
-    from ..._client import ZhipuAI
+    from ...._client import ZhipuAI
 
 __all__ = ["Jobs"]
 
@@ -29,6 +39,7 @@ class Jobs(BaseAPI):
         request_id: Optional[str] | NotGiven = NOT_GIVEN,
         validation_file: Optional[str] | NotGiven = NOT_GIVEN,
         extra_headers: Headers | None = None,
+        extra_body: Body | None = None,
         timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
     ) -> FineTuningJob:
         return self._post(
@@ -41,7 +52,7 @@ class Jobs(BaseAPI):
                 "validation_file": validation_file,
                 "request_id": request_id,
             },
-            options=make_user_request_input(extra_headers=extra_headers, timeout=timeout),
+            options=make_request_options(extra_headers=extra_headers, extra_body=extra_body, timeout=timeout),
             cast_type=FineTuningJob,
         )
 
@@ -50,11 +61,12 @@ class Jobs(BaseAPI):
         fine_tuning_job_id: str,
         *,
         extra_headers: Headers | None = None,
+        extra_body: Body | None = None,
         timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
     ) -> FineTuningJob:
         return self._get(
             f"/fine_tuning/jobs/{fine_tuning_job_id}",
-            options=make_user_request_input(extra_headers=extra_headers, timeout=timeout),
+            options=make_request_options(extra_headers=extra_headers, extra_body=extra_body, timeout=timeout),
             cast_type=FineTuningJob,
         )
 
@@ -64,13 +76,15 @@ class Jobs(BaseAPI):
         after: str | NotGiven = NOT_GIVEN,
         limit: int | NotGiven = NOT_GIVEN,
         extra_headers: Headers | None = None,
+        extra_body: Body | None = None,
         timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
     ) -> ListOfFineTuningJob:
         return self._get(
             "/fine_tuning/jobs",
             cast_type=ListOfFineTuningJob,
-            options=make_user_request_input(
+            options=make_request_options(
                 extra_headers=extra_headers,
+                extra_body=extra_body,
                 timeout=timeout,
                 query={
                     "after": after,
@@ -79,6 +93,24 @@ class Jobs(BaseAPI):
             ),
         )
 
+    def cancel(
+        self,
+        fine_tuning_job_id: str,
+        *,
+        # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.  # noqa: E501
+        # The extra values given here take precedence over values defined on the client or passed to this method.
+        extra_headers: Headers | None = None,
+        extra_body: Body | None = None,
+        timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+    ) -> FineTuningJob:
+        if not fine_tuning_job_id:
+            raise ValueError(f"Expected a non-empty value for `fine_tuning_job_id` but received {fine_tuning_job_id!r}")
+        return self._post(
+            f"/fine_tuning/jobs/{fine_tuning_job_id}/cancel",
+            options=make_request_options(extra_headers=extra_headers, extra_body=extra_body, timeout=timeout),
+            cast_type=FineTuningJob,
+        )
+
     def list_events(
         self,
         fine_tuning_job_id: str,
@@ -86,13 +118,15 @@ class Jobs(BaseAPI):
         after: str | NotGiven = NOT_GIVEN,
         limit: int | NotGiven = NOT_GIVEN,
         extra_headers: Headers | None = None,
+        extra_body: Body | None = None,
         timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
     ) -> FineTuningJobEvent:
         return self._get(
             f"/fine_tuning/jobs/{fine_tuning_job_id}/events",
             cast_type=FineTuningJobEvent,
-            options=make_user_request_input(
+            options=make_request_options(
                 extra_headers=extra_headers,
+                extra_body=extra_body,
                 timeout=timeout,
                 query={
                     "after": after,
@@ -100,3 +134,19 @@ class Jobs(BaseAPI):
                 },
             ),
         )
+
+    def delete(
+        self,
+        fine_tuning_job_id: str,
+        *,
+        extra_headers: Headers | None = None,
+        extra_body: Body | None = None,
+        timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+    ) -> FineTuningJob:
+        if not fine_tuning_job_id:
+            raise ValueError(f"Expected a non-empty value for `fine_tuning_job_id` but received {fine_tuning_job_id!r}")
+        return self._delete(
+            f"/fine_tuning/jobs/{fine_tuning_job_id}",
+            options=make_request_options(extra_headers=extra_headers, extra_body=extra_body, timeout=timeout),
+            cast_type=FineTuningJob,
+        )

+ 3 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/fine_tuning/models/__init__.py

@@ -0,0 +1,3 @@
+from .fine_tuned_models import FineTunedModels
+
+__all__ = ["FineTunedModels"]

+ 41 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/fine_tuning/models/fine_tuned_models.py

@@ -0,0 +1,41 @@
+from __future__ import annotations
+
+from typing import TYPE_CHECKING
+
+import httpx
+
+from ....core import (
+    NOT_GIVEN,
+    BaseAPI,
+    Body,
+    Headers,
+    NotGiven,
+    make_request_options,
+)
+from ....types.fine_tuning.models import FineTunedModelsStatus
+
+if TYPE_CHECKING:
+    from ...._client import ZhipuAI
+
+__all__ = ["FineTunedModels"]
+
+
+class FineTunedModels(BaseAPI):
+    def __init__(self, client: ZhipuAI) -> None:
+        super().__init__(client)
+
+    def delete(
+        self,
+        fine_tuned_model: str,
+        *,
+        extra_headers: Headers | None = None,
+        extra_body: Body | None = None,
+        timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+    ) -> FineTunedModelsStatus:
+        if not fine_tuned_model:
+            raise ValueError(f"Expected a non-empty value for `fine_tuned_model` but received {fine_tuned_model!r}")
+        return self._delete(
+            f"fine_tuning/fine_tuned_models/{fine_tuned_model}",
+            options=make_request_options(extra_headers=extra_headers, extra_body=extra_body, timeout=timeout),
+            cast_type=FineTunedModelsStatus,
+        )

+ 8 - 5
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/images.py

@@ -4,10 +4,9 @@ from typing import TYPE_CHECKING, Optional
 
 import httpx
 
-from ..core._base_api import BaseAPI
-from ..core._base_type import NOT_GIVEN, Body, Headers, NotGiven
-from ..core._http_client import make_user_request_input
+from ..core import NOT_GIVEN, BaseAPI, Body, Headers, NotGiven, make_request_options
 from ..types.image import ImagesResponded
+from ..types.sensitive_word_check import SensitiveWordCheckRequest
 
 if TYPE_CHECKING:
     from .._client import ZhipuAI
@@ -27,8 +26,10 @@ class Images(BaseAPI):
         response_format: Optional[str] | NotGiven = NOT_GIVEN,
         size: Optional[str] | NotGiven = NOT_GIVEN,
         style: Optional[str] | NotGiven = NOT_GIVEN,
+        sensitive_word_check: Optional[SensitiveWordCheckRequest] | NotGiven = NOT_GIVEN,
         user: str | NotGiven = NOT_GIVEN,
         request_id: Optional[str] | NotGiven = NOT_GIVEN,
+        user_id: Optional[str] | NotGiven = NOT_GIVEN,
         extra_headers: Headers | None = None,
         extra_body: Body | None = None,
         disable_strict_validation: Optional[bool] | None = None,
@@ -45,12 +46,14 @@ class Images(BaseAPI):
                 "n": n,
                 "quality": quality,
                 "response_format": response_format,
+                "sensitive_word_check": sensitive_word_check,
                 "size": size,
                 "style": style,
                 "user": user,
+                "user_id": user_id,
                 "request_id": request_id,
             },
-            options=make_user_request_input(extra_headers=extra_headers, extra_body=extra_body, timeout=timeout),
+            options=make_request_options(extra_headers=extra_headers, extra_body=extra_body, timeout=timeout),
             cast_type=_cast_type,
-            enable_stream=False,
+            stream=False,
         )

+ 3 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/knowledge/__init__.py

@@ -0,0 +1,3 @@
+from .knowledge import Knowledge
+
+__all__ = ["Knowledge"]

+ 3 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/knowledge/document/__init__.py

@@ -0,0 +1,3 @@
+from .document import Document
+
+__all__ = ["Document"]

+ 217 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/knowledge/document/document.py

@@ -0,0 +1,217 @@
+from __future__ import annotations
+
+from collections.abc import Mapping
+from typing import TYPE_CHECKING, Literal, Optional, cast
+
+import httpx
+
+from ....core import (
+    NOT_GIVEN,
+    BaseAPI,
+    Body,
+    FileTypes,
+    Headers,
+    NotGiven,
+    deepcopy_minimal,
+    extract_files,
+    make_request_options,
+    maybe_transform,
+)
+from ....types.files import UploadDetail, file_create_params
+from ....types.knowledge.document import DocumentData, DocumentObject, document_edit_params, document_list_params
+from ....types.knowledge.document.document_list_resp import DocumentPage
+
+if TYPE_CHECKING:
+    from ...._client import ZhipuAI
+
+__all__ = ["Document"]
+
+
+class Document(BaseAPI):
+    def __init__(self, client: ZhipuAI) -> None:
+        super().__init__(client)
+
+    def create(
+        self,
+        *,
+        file: FileTypes = None,
+        custom_separator: Optional[list[str]] = None,
+        upload_detail: list[UploadDetail] = None,
+        purpose: Literal["retrieval"],
+        knowledge_id: str = None,
+        sentence_size: int = None,
+        extra_headers: Headers | None = None,
+        extra_body: Body | None = None,
+        timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+    ) -> DocumentObject:
+        if not file and not upload_detail:
+            raise ValueError("At least one of `file` and `upload_detail` must be provided.")
+        body = deepcopy_minimal(
+            {
+                "file": file,
+                "upload_detail": upload_detail,
+                "purpose": purpose,
+                "custom_separator": custom_separator,
+                "knowledge_id": knowledge_id,
+                "sentence_size": sentence_size,
+            }
+        )
+        files = extract_files(cast(Mapping[str, object], body), paths=[["file"]])
+        if files:
+            # It should be noted that the actual Content-Type header that will be
+            # sent to the server will contain a `boundary` parameter, e.g.
+            # multipart/form-data; boundary=---abc--
+            extra_headers = {"Content-Type": "multipart/form-data", **(extra_headers or {})}
+        return self._post(
+            "/files",
+            body=maybe_transform(body, file_create_params.FileCreateParams),
+            files=files,
+            options=make_request_options(extra_headers=extra_headers, extra_body=extra_body, timeout=timeout),
+            cast_type=DocumentObject,
+        )
+
+    def edit(
+        self,
+        document_id: str,
+        knowledge_type: str,
+        *,
+        custom_separator: Optional[list[str]] = None,
+        sentence_size: Optional[int] = None,
+        callback_url: Optional[str] = None,
+        callback_header: Optional[dict[str, str]] = None,
+        extra_headers: Headers | None = None,
+        extra_body: Body | None = None,
+        timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+    ) -> httpx.Response:
+        """
+
+        Args:
+          document_id: 知识id
+          knowledge_type: 知识类型:
+                        1:文章知识: 支持pdf,url,docx
+                        2.问答知识-文档:  支持pdf,url,docx
+                        3.问答知识-表格:  支持xlsx
+                        4.商品库-表格:  支持xlsx
+                        5.自定义:  支持pdf,url,docx
+          extra_headers: Send extra headers
+
+          extra_body: Add additional JSON properties to the request
+
+          timeout: Override the client-level default timeout for this request, in seconds
+          :param knowledge_type:
+          :param document_id:
+          :param timeout:
+          :param extra_body:
+          :param callback_header:
+          :param sentence_size:
+          :param extra_headers:
+          :param callback_url:
+          :param custom_separator:
+        """
+        if not document_id:
+            raise ValueError(f"Expected a non-empty value for `document_id` but received {document_id!r}")
+
+        body = deepcopy_minimal(
+            {
+                "id": document_id,
+                "knowledge_type": knowledge_type,
+                "custom_separator": custom_separator,
+                "sentence_size": sentence_size,
+                "callback_url": callback_url,
+                "callback_header": callback_header,
+            }
+        )
+
+        return self._put(
+            f"/document/{document_id}",
+            body=maybe_transform(body, document_edit_params.DocumentEditParams),
+            options=make_request_options(extra_headers=extra_headers, extra_body=extra_body, timeout=timeout),
+            cast_type=httpx.Response,
+        )
+
+    def list(
+        self,
+        knowledge_id: str,
+        *,
+        purpose: str | NotGiven = NOT_GIVEN,
+        page: str | NotGiven = NOT_GIVEN,
+        limit: str | NotGiven = NOT_GIVEN,
+        order: Literal["desc", "asc"] | NotGiven = NOT_GIVEN,
+        extra_headers: Headers | None = None,
+        extra_body: Body | None = None,
+        timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+    ) -> DocumentPage:
+        return self._get(
+            "/files",
+            options=make_request_options(
+                extra_headers=extra_headers,
+                extra_body=extra_body,
+                timeout=timeout,
+                query=maybe_transform(
+                    {
+                        "knowledge_id": knowledge_id,
+                        "purpose": purpose,
+                        "page": page,
+                        "limit": limit,
+                        "order": order,
+                    },
+                    document_list_params.DocumentListParams,
+                ),
+            ),
+            cast_type=DocumentPage,
+        )
+
+    def delete(
+        self,
+        document_id: str,
+        *,
+        extra_headers: Headers | None = None,
+        extra_body: Body | None = None,
+        timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+    ) -> httpx.Response:
+        """
+        Delete a file.
+
+        Args:
+
+          document_id: 知识id
+          extra_headers: Send extra headers
+
+          extra_body: Add additional JSON properties to the request
+
+          timeout: Override the client-level default timeout for this request, in seconds
+        """
+        if not document_id:
+            raise ValueError(f"Expected a non-empty value for `document_id` but received {document_id!r}")
+
+        return self._delete(
+            f"/document/{document_id}",
+            options=make_request_options(extra_headers=extra_headers, extra_body=extra_body, timeout=timeout),
+            cast_type=httpx.Response,
+        )
+
+    def retrieve(
+        self,
+        document_id: str,
+        *,
+        extra_headers: Headers | None = None,
+        extra_body: Body | None = None,
+        timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+    ) -> DocumentData:
+        """
+
+        Args:
+          extra_headers: Send extra headers
+
+          extra_body: Add additional JSON properties to the request
+
+          timeout: Override the client-level default timeout for this request, in seconds
+        """
+        if not document_id:
+            raise ValueError(f"Expected a non-empty value for `document_id` but received {document_id!r}")
+
+        return self._get(
+            f"/document/{document_id}",
+            options=make_request_options(extra_headers=extra_headers, extra_body=extra_body, timeout=timeout),
+            cast_type=DocumentData,
+        )

+ 173 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/knowledge/knowledge.py

@@ -0,0 +1,173 @@
+from __future__ import annotations
+
+from typing import TYPE_CHECKING, Literal, Optional
+
+import httpx
+
+from ...core import (
+    NOT_GIVEN,
+    BaseAPI,
+    Body,
+    Headers,
+    NotGiven,
+    cached_property,
+    deepcopy_minimal,
+    make_request_options,
+    maybe_transform,
+)
+from ...types.knowledge import KnowledgeInfo, KnowledgeUsed, knowledge_create_params, knowledge_list_params
+from ...types.knowledge.knowledge_list_resp import KnowledgePage
+from .document import Document
+
+if TYPE_CHECKING:
+    from ..._client import ZhipuAI
+
+__all__ = ["Knowledge"]
+
+
+class Knowledge(BaseAPI):
+    def __init__(self, client: ZhipuAI) -> None:
+        super().__init__(client)
+
+    @cached_property
+    def document(self) -> Document:
+        return Document(self._client)
+
+    def create(
+        self,
+        embedding_id: int,
+        name: str,
+        *,
+        customer_identifier: Optional[str] = None,
+        description: Optional[str] = None,
+        background: Optional[Literal["blue", "red", "orange", "purple", "sky"]] = None,
+        icon: Optional[Literal["question", "book", "seal", "wrench", "tag", "horn", "house"]] = None,
+        bucket_id: Optional[str] = None,
+        extra_headers: Headers | None = None,
+        extra_body: Body | None = None,
+        timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+    ) -> KnowledgeInfo:
+        body = deepcopy_minimal(
+            {
+                "embedding_id": embedding_id,
+                "name": name,
+                "customer_identifier": customer_identifier,
+                "description": description,
+                "background": background,
+                "icon": icon,
+                "bucket_id": bucket_id,
+            }
+        )
+        return self._post(
+            "/knowledge",
+            body=maybe_transform(body, knowledge_create_params.KnowledgeBaseParams),
+            options=make_request_options(extra_headers=extra_headers, extra_body=extra_body, timeout=timeout),
+            cast_type=KnowledgeInfo,
+        )
+
+    def modify(
+        self,
+        knowledge_id: str,
+        embedding_id: int,
+        *,
+        name: str,
+        description: Optional[str] = None,
+        background: Optional[Literal["blue", "red", "orange", "purple", "sky"]] = None,
+        icon: Optional[Literal["question", "book", "seal", "wrench", "tag", "horn", "house"]] = None,
+        extra_headers: Headers | None = None,
+        extra_body: Body | None = None,
+        timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+    ) -> httpx.Response:
+        body = deepcopy_minimal(
+            {
+                "id": knowledge_id,
+                "embedding_id": embedding_id,
+                "name": name,
+                "description": description,
+                "background": background,
+                "icon": icon,
+            }
+        )
+        return self._put(
+            f"/knowledge/{knowledge_id}",
+            body=maybe_transform(body, knowledge_create_params.KnowledgeBaseParams),
+            options=make_request_options(extra_headers=extra_headers, extra_body=extra_body, timeout=timeout),
+            cast_type=httpx.Response,
+        )
+
+    def query(
+        self,
+        *,
+        page: int | NotGiven = 1,
+        size: int | NotGiven = 10,
+        extra_headers: Headers | None = None,
+        extra_body: Body | None = None,
+        timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+    ) -> KnowledgePage:
+        return self._get(
+            "/knowledge",
+            options=make_request_options(
+                extra_headers=extra_headers,
+                extra_body=extra_body,
+                timeout=timeout,
+                query=maybe_transform(
+                    {
+                        "page": page,
+                        "size": size,
+                    },
+                    knowledge_list_params.KnowledgeListParams,
+                ),
+            ),
+            cast_type=KnowledgePage,
+        )
+
+    def delete(
+        self,
+        knowledge_id: str,
+        *,
+        extra_headers: Headers | None = None,
+        extra_body: Body | None = None,
+        timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+    ) -> httpx.Response:
+        """
+        Delete a file.
+
+        Args:
+          knowledge_id: 知识库ID
+          extra_headers: Send extra headers
+
+          extra_body: Add additional JSON properties to the request
+
+          timeout: Override the client-level default timeout for this request, in seconds
+        """
+        if not knowledge_id:
+            raise ValueError("Expected a non-empty value for `knowledge_id`")
+
+        return self._delete(
+            f"/knowledge/{knowledge_id}",
+            options=make_request_options(extra_headers=extra_headers, extra_body=extra_body, timeout=timeout),
+            cast_type=httpx.Response,
+        )
+
+    def used(
+        self,
+        *,
+        extra_headers: Headers | None = None,
+        extra_body: Body | None = None,
+        timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+    ) -> KnowledgeUsed:
+        """
+        Returns the contents of the specified file.
+
+        Args:
+          extra_headers: Send extra headers
+
+          extra_body: Add additional JSON properties to the request
+
+          timeout: Override the client-level default timeout for this request, in seconds
+        """
+        return self._get(
+            "/knowledge/capacity",
+            options=make_request_options(extra_headers=extra_headers, extra_body=extra_body, timeout=timeout),
+            cast_type=KnowledgeUsed,
+        )

+ 3 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/tools/__init__.py

@@ -0,0 +1,3 @@
+from .tools import Tools
+
+__all__ = ["Tools"]

+ 65 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/tools/tools.py

@@ -0,0 +1,65 @@
+from __future__ import annotations
+
+import logging
+from typing import TYPE_CHECKING, Literal, Optional, Union
+
+import httpx
+
+from ...core import (
+    NOT_GIVEN,
+    BaseAPI,
+    Body,
+    Headers,
+    NotGiven,
+    StreamResponse,
+    deepcopy_minimal,
+    make_request_options,
+    maybe_transform,
+)
+from ...types.tools import WebSearch, WebSearchChunk, tools_web_search_params
+
+logger = logging.getLogger(__name__)
+
+if TYPE_CHECKING:
+    from ..._client import ZhipuAI
+
+__all__ = ["Tools"]
+
+
+class Tools(BaseAPI):
+    def __init__(self, client: ZhipuAI) -> None:
+        super().__init__(client)
+
+    def web_search(
+        self,
+        *,
+        model: str,
+        request_id: Optional[str] | NotGiven = NOT_GIVEN,
+        stream: Optional[Literal[False]] | Literal[True] | NotGiven = NOT_GIVEN,
+        messages: Union[str, list[str], list[int], object, None],
+        scope: Optional[str] | NotGiven = NOT_GIVEN,
+        location: Optional[str] | NotGiven = NOT_GIVEN,
+        recent_days: Optional[int] | NotGiven = NOT_GIVEN,
+        extra_headers: Headers | None = None,
+        extra_body: Body | None = None,
+        timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+    ) -> WebSearch | StreamResponse[WebSearchChunk]:
+        body = deepcopy_minimal(
+            {
+                "model": model,
+                "request_id": request_id,
+                "messages": messages,
+                "stream": stream,
+                "scope": scope,
+                "location": location,
+                "recent_days": recent_days,
+            }
+        )
+        return self._post(
+            "/tools",
+            body=maybe_transform(body, tools_web_search_params.WebSearchParams),
+            options=make_request_options(extra_headers=extra_headers, extra_body=extra_body, timeout=timeout),
+            cast_type=WebSearch,
+            stream=stream or False,
+            stream_cls=StreamResponse[WebSearchChunk],
+        )

+ 7 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/videos/__init__.py

@@ -0,0 +1,7 @@
+from .videos import (
+    Videos,
+)
+
+__all__ = [
+    "Videos",
+]

+ 77 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/api_resource/videos/videos.py

@@ -0,0 +1,77 @@
+from __future__ import annotations
+
+from typing import TYPE_CHECKING, Optional
+
+import httpx
+
+from ...core import (
+    NOT_GIVEN,
+    BaseAPI,
+    Body,
+    Headers,
+    NotGiven,
+    deepcopy_minimal,
+    make_request_options,
+    maybe_transform,
+)
+from ...types.sensitive_word_check import SensitiveWordCheckRequest
+from ...types.video import VideoObject, video_create_params
+
+if TYPE_CHECKING:
+    from ..._client import ZhipuAI
+
+__all__ = ["Videos"]
+
+
+class Videos(BaseAPI):
+    def __init__(self, client: ZhipuAI) -> None:
+        super().__init__(client)
+
+    def generations(
+        self,
+        model: str,
+        *,
+        prompt: str = None,
+        image_url: str = None,
+        sensitive_word_check: Optional[SensitiveWordCheckRequest] | NotGiven = NOT_GIVEN,
+        request_id: str = None,
+        user_id: str = None,
+        extra_headers: Headers | None = None,
+        extra_body: Body | None = None,
+        timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+    ) -> VideoObject:
+        if not model and not model:
+            raise ValueError("At least one of `model` and `prompt` must be provided.")
+        body = deepcopy_minimal(
+            {
+                "model": model,
+                "prompt": prompt,
+                "image_url": image_url,
+                "sensitive_word_check": sensitive_word_check,
+                "request_id": request_id,
+                "user_id": user_id,
+            }
+        )
+        return self._post(
+            "/videos/generations",
+            body=maybe_transform(body, video_create_params.VideoCreateParams),
+            options=make_request_options(extra_headers=extra_headers, extra_body=extra_body, timeout=timeout),
+            cast_type=VideoObject,
+        )
+
+    def retrieve_videos_result(
+        self,
+        id: str,
+        *,
+        extra_headers: Headers | None = None,
+        extra_body: Body | None = None,
+        timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+    ) -> VideoObject:
+        if not id:
+            raise ValueError("At least one of `id` must be provided.")
+
+        return self._get(
+            f"/async-result/{id}",
+            options=make_request_options(extra_headers=extra_headers, extra_body=extra_body, timeout=timeout),
+            cast_type=VideoObject,
+        )

+ 108 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/core/__init__.py

@@ -0,0 +1,108 @@
+from ._base_api import BaseAPI
+from ._base_compat import (
+    PYDANTIC_V2,
+    ConfigDict,
+    GenericModel,
+    cached_property,
+    field_get_default,
+    get_args,
+    get_model_config,
+    get_model_fields,
+    get_origin,
+    is_literal_type,
+    is_union,
+    parse_obj,
+)
+from ._base_models import BaseModel, construct_type
+from ._base_type import (
+    NOT_GIVEN,
+    Body,
+    FileTypes,
+    Headers,
+    IncEx,
+    ModelT,
+    NotGiven,
+    Query,
+)
+from ._constants import (
+    ZHIPUAI_DEFAULT_LIMITS,
+    ZHIPUAI_DEFAULT_MAX_RETRIES,
+    ZHIPUAI_DEFAULT_TIMEOUT,
+)
+from ._errors import (
+    APIAuthenticationError,
+    APIConnectionError,
+    APIInternalError,
+    APIReachLimitError,
+    APIRequestFailedError,
+    APIResponseError,
+    APIResponseValidationError,
+    APIServerFlowExceedError,
+    APIStatusError,
+    APITimeoutError,
+    ZhipuAIError,
+)
+from ._files import is_file_content
+from ._http_client import HttpClient, make_request_options
+from ._sse_client import StreamResponse
+from ._utils import (
+    deepcopy_minimal,
+    drop_prefix_image_data,
+    extract_files,
+    is_given,
+    is_list,
+    is_mapping,
+    maybe_transform,
+    parse_date,
+    parse_datetime,
+)
+
+__all__ = [
+    "BaseModel",
+    "construct_type",
+    "BaseAPI",
+    "NOT_GIVEN",
+    "Headers",
+    "NotGiven",
+    "Body",
+    "IncEx",
+    "ModelT",
+    "Query",
+    "FileTypes",
+    "PYDANTIC_V2",
+    "ConfigDict",
+    "GenericModel",
+    "get_args",
+    "is_union",
+    "parse_obj",
+    "get_origin",
+    "is_literal_type",
+    "get_model_config",
+    "get_model_fields",
+    "field_get_default",
+    "is_file_content",
+    "ZhipuAIError",
+    "APIStatusError",
+    "APIRequestFailedError",
+    "APIAuthenticationError",
+    "APIReachLimitError",
+    "APIInternalError",
+    "APIServerFlowExceedError",
+    "APIResponseError",
+    "APIResponseValidationError",
+    "APITimeoutError",
+    "make_request_options",
+    "HttpClient",
+    "ZHIPUAI_DEFAULT_TIMEOUT",
+    "ZHIPUAI_DEFAULT_MAX_RETRIES",
+    "ZHIPUAI_DEFAULT_LIMITS",
+    "is_list",
+    "is_mapping",
+    "parse_date",
+    "parse_datetime",
+    "is_given",
+    "maybe_transform",
+    "deepcopy_minimal",
+    "extract_files",
+    "StreamResponse",
+]

+ 1 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/core/_base_api.py

@@ -16,3 +16,4 @@ class BaseAPI:
         self._post = client.post
         self._put = client.put
         self._patch = client.patch
+        self._get_api_list = client.get_api_list

+ 209 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/core/_base_compat.py

@@ -0,0 +1,209 @@
+from __future__ import annotations
+
+from collections.abc import Callable
+from datetime import date, datetime
+from typing import TYPE_CHECKING, Any, Generic, TypeVar, Union, cast, overload
+
+import pydantic
+from pydantic.fields import FieldInfo
+from typing_extensions import Self
+
+from ._base_type import StrBytesIntFloat
+
+_T = TypeVar("_T")
+_ModelT = TypeVar("_ModelT", bound=pydantic.BaseModel)
+
+# --------------- Pydantic v2 compatibility ---------------
+
+# Pyright incorrectly reports some of our functions as overriding a method when they don't
+# pyright: reportIncompatibleMethodOverride=false
+
+PYDANTIC_V2 = pydantic.VERSION.startswith("2.")
+
+# v1 re-exports
+if TYPE_CHECKING:
+
+    def parse_date(value: date | StrBytesIntFloat) -> date: ...
+
+    def parse_datetime(value: Union[datetime, StrBytesIntFloat]) -> datetime: ...
+
+    def get_args(t: type[Any]) -> tuple[Any, ...]: ...
+
+    def is_union(tp: type[Any] | None) -> bool: ...
+
+    def get_origin(t: type[Any]) -> type[Any] | None: ...
+
+    def is_literal_type(type_: type[Any]) -> bool: ...
+
+    def is_typeddict(type_: type[Any]) -> bool: ...
+
+else:
+    if PYDANTIC_V2:
+        from pydantic.v1.typing import (  # noqa: I001
+            get_args as get_args,  # noqa: PLC0414
+            is_union as is_union,  # noqa: PLC0414
+            get_origin as get_origin,  # noqa: PLC0414
+            is_typeddict as is_typeddict,  # noqa: PLC0414
+            is_literal_type as is_literal_type,  # noqa: PLC0414
+        )
+        from pydantic.v1.datetime_parse import parse_date as parse_date, parse_datetime as parse_datetime  # noqa: PLC0414
+    else:
+        from pydantic.typing import (  # noqa: I001
+            get_args as get_args,  # noqa: PLC0414
+            is_union as is_union,  # noqa: PLC0414
+            get_origin as get_origin,  # noqa: PLC0414
+            is_typeddict as is_typeddict,  # noqa: PLC0414
+            is_literal_type as is_literal_type,  # noqa: PLC0414
+        )
+        from pydantic.datetime_parse import parse_date as parse_date, parse_datetime as parse_datetime  # noqa: PLC0414
+
+
+# refactored config
+if TYPE_CHECKING:
+    from pydantic import ConfigDict
+else:
+    if PYDANTIC_V2:
+        from pydantic import ConfigDict
+    else:
+        # TODO: provide an error message here?
+        ConfigDict = None
+
+
+# renamed methods / properties
+def parse_obj(model: type[_ModelT], value: object) -> _ModelT:
+    if PYDANTIC_V2:
+        return model.model_validate(value)
+    else:
+        # pyright: ignore[reportDeprecated, reportUnnecessaryCast]
+        return cast(_ModelT, model.parse_obj(value))
+
+
+def field_is_required(field: FieldInfo) -> bool:
+    if PYDANTIC_V2:
+        return field.is_required()
+    return field.required  # type: ignore
+
+
+def field_get_default(field: FieldInfo) -> Any:
+    value = field.get_default()
+    if PYDANTIC_V2:
+        from pydantic_core import PydanticUndefined
+
+        if value == PydanticUndefined:
+            return None
+        return value
+    return value
+
+
+def field_outer_type(field: FieldInfo) -> Any:
+    if PYDANTIC_V2:
+        return field.annotation
+    return field.outer_type_  # type: ignore
+
+
+def get_model_config(model: type[pydantic.BaseModel]) -> Any:
+    if PYDANTIC_V2:
+        return model.model_config
+    return model.__config__  # type: ignore
+
+
+def get_model_fields(model: type[pydantic.BaseModel]) -> dict[str, FieldInfo]:
+    if PYDANTIC_V2:
+        return model.model_fields
+    return model.__fields__  # type: ignore
+
+
+def model_copy(model: _ModelT) -> _ModelT:
+    if PYDANTIC_V2:
+        return model.model_copy()
+    return model.copy()  # type: ignore
+
+
+def model_json(model: pydantic.BaseModel, *, indent: int | None = None) -> str:
+    if PYDANTIC_V2:
+        return model.model_dump_json(indent=indent)
+    return model.json(indent=indent)  # type: ignore
+
+
+def model_dump(
+    model: pydantic.BaseModel,
+    *,
+    exclude_unset: bool = False,
+    exclude_defaults: bool = False,
+) -> dict[str, Any]:
+    if PYDANTIC_V2:
+        return model.model_dump(
+            exclude_unset=exclude_unset,
+            exclude_defaults=exclude_defaults,
+        )
+    return cast(
+        "dict[str, Any]",
+        model.dict(  # pyright: ignore[reportDeprecated, reportUnnecessaryCast]
+            exclude_unset=exclude_unset,
+            exclude_defaults=exclude_defaults,
+        ),
+    )
+
+
+def model_parse(model: type[_ModelT], data: Any) -> _ModelT:
+    if PYDANTIC_V2:
+        return model.model_validate(data)
+    return model.parse_obj(data)  # pyright: ignore[reportDeprecated]
+
+
+# generic models
+if TYPE_CHECKING:
+
+    class GenericModel(pydantic.BaseModel): ...
+
+else:
+    if PYDANTIC_V2:
+        # there no longer needs to be a distinction in v2 but
+        # we still have to create our own subclass to avoid
+        # inconsistent MRO ordering errors
+        class GenericModel(pydantic.BaseModel): ...
+
+    else:
+        import pydantic.generics
+
+        class GenericModel(pydantic.generics.GenericModel, pydantic.BaseModel): ...
+
+
+# cached properties
+if TYPE_CHECKING:
+    cached_property = property
+
+    # we define a separate type (copied from typeshed)
+    # that represents that `cached_property` is `set`able
+    # at runtime, which differs from `@property`.
+    #
+    # this is a separate type as editors likely special case
+    # `@property` and we don't want to cause issues just to have
+    # more helpful internal types.
+
+    class typed_cached_property(Generic[_T]):  # noqa: N801
+        func: Callable[[Any], _T]
+        attrname: str | None
+
+        def __init__(self, func: Callable[[Any], _T]) -> None: ...
+
+        @overload
+        def __get__(self, instance: None, owner: type[Any] | None = None) -> Self: ...
+
+        @overload
+        def __get__(self, instance: object, owner: type[Any] | None = None) -> _T: ...
+
+        def __get__(self, instance: object, owner: type[Any] | None = None) -> _T | Self:
+            raise NotImplementedError()
+
+        def __set_name__(self, owner: type[Any], name: str) -> None: ...
+
+        # __set__ is not defined at runtime, but @cached_property is designed to be settable
+        def __set__(self, instance: object, value: _T) -> None: ...
+else:
+    try:
+        from functools import cached_property
+    except ImportError:
+        from cached_property import cached_property
+
+    typed_cached_property = cached_property

+ 671 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/core/_base_models.py

@@ -0,0 +1,671 @@
+from __future__ import annotations
+
+import inspect
+import os
+from collections.abc import Callable
+from datetime import date, datetime
+from typing import TYPE_CHECKING, Any, ClassVar, Generic, Literal, TypeGuard, TypeVar, cast
+
+import pydantic
+import pydantic.generics
+from pydantic.fields import FieldInfo
+from typing_extensions import (
+    ParamSpec,
+    Protocol,
+    override,
+    runtime_checkable,
+)
+
+from ._base_compat import (
+    PYDANTIC_V2,
+    ConfigDict,
+    field_get_default,
+    get_args,
+    get_model_config,
+    get_model_fields,
+    get_origin,
+    is_literal_type,
+    is_union,
+    parse_obj,
+)
+from ._base_compat import (
+    GenericModel as BaseGenericModel,
+)
+from ._base_type import (
+    IncEx,
+    ModelT,
+)
+from ._utils import (
+    PropertyInfo,
+    coerce_boolean,
+    extract_type_arg,
+    is_annotated_type,
+    is_list,
+    is_mapping,
+    parse_date,
+    parse_datetime,
+    strip_annotated_type,
+)
+
+if TYPE_CHECKING:
+    from pydantic_core.core_schema import LiteralSchema, ModelField, ModelFieldsSchema
+
+__all__ = ["BaseModel", "GenericModel"]
+_BaseModelT = TypeVar("_BaseModelT", bound="BaseModel")
+
+_T = TypeVar("_T")
+P = ParamSpec("P")
+
+
+@runtime_checkable
+class _ConfigProtocol(Protocol):
+    allow_population_by_field_name: bool
+
+
+class BaseModel(pydantic.BaseModel):
+    if PYDANTIC_V2:
+        model_config: ClassVar[ConfigDict] = ConfigDict(
+            extra="allow", defer_build=coerce_boolean(os.environ.get("DEFER_PYDANTIC_BUILD", "true"))
+        )
+    else:
+
+        @property
+        @override
+        def model_fields_set(self) -> set[str]:
+            # a forwards-compat shim for pydantic v2
+            return self.__fields_set__  # type: ignore
+
+        class Config(pydantic.BaseConfig):  # pyright: ignore[reportDeprecated]
+            extra: Any = pydantic.Extra.allow  # type: ignore
+
+    def to_dict(
+        self,
+        *,
+        mode: Literal["json", "python"] = "python",
+        use_api_names: bool = True,
+        exclude_unset: bool = True,
+        exclude_defaults: bool = False,
+        exclude_none: bool = False,
+        warnings: bool = True,
+    ) -> dict[str, object]:
+        """Recursively generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
+
+        By default, fields that were not set by the API will not be included,
+        and keys will match the API response, *not* the property names from the model.
+
+        For example, if the API responds with `"fooBar": true` but we've defined a `foo_bar: bool` property,
+        the output will use the `"fooBar"` key (unless `use_api_names=False` is passed).
+
+        Args:
+            mode:
+                If mode is 'json', the dictionary will only contain JSON serializable types. e.g. `datetime` will be turned into a string, `"2024-3-22T18:11:19.117000Z"`.
+                If mode is 'python', the dictionary may contain any Python objects. e.g. `datetime(2024, 3, 22)`
+
+            use_api_names: Whether to use the key that the API responded with or the property name. Defaults to `True`.
+            exclude_unset: Whether to exclude fields that have not been explicitly set.
+            exclude_defaults: Whether to exclude fields that are set to their default value from the output.
+            exclude_none: Whether to exclude fields that have a value of `None` from the output.
+            warnings: Whether to log warnings when invalid fields are encountered. This is only supported in Pydantic v2.
+        """  # noqa: E501
+        return self.model_dump(
+            mode=mode,
+            by_alias=use_api_names,
+            exclude_unset=exclude_unset,
+            exclude_defaults=exclude_defaults,
+            exclude_none=exclude_none,
+            warnings=warnings,
+        )
+
+    def to_json(
+        self,
+        *,
+        indent: int | None = 2,
+        use_api_names: bool = True,
+        exclude_unset: bool = True,
+        exclude_defaults: bool = False,
+        exclude_none: bool = False,
+        warnings: bool = True,
+    ) -> str:
+        """Generates a JSON string representing this model as it would be received from or sent to the API (but with indentation).
+
+        By default, fields that were not set by the API will not be included,
+        and keys will match the API response, *not* the property names from the model.
+
+        For example, if the API responds with `"fooBar": true` but we've defined a `foo_bar: bool` property,
+        the output will use the `"fooBar"` key (unless `use_api_names=False` is passed).
+
+        Args:
+            indent: Indentation to use in the JSON output. If `None` is passed, the output will be compact. Defaults to `2`
+            use_api_names: Whether to use the key that the API responded with or the property name. Defaults to `True`.
+            exclude_unset: Whether to exclude fields that have not been explicitly set.
+            exclude_defaults: Whether to exclude fields that have the default value.
+            exclude_none: Whether to exclude fields that have a value of `None`.
+            warnings: Whether to show any warnings that occurred during serialization. This is only supported in Pydantic v2.
+        """  # noqa: E501
+        return self.model_dump_json(
+            indent=indent,
+            by_alias=use_api_names,
+            exclude_unset=exclude_unset,
+            exclude_defaults=exclude_defaults,
+            exclude_none=exclude_none,
+            warnings=warnings,
+        )
+
+    @override
+    def __str__(self) -> str:
+        # mypy complains about an invalid self arg
+        return f'{self.__repr_name__()}({self.__repr_str__(", ")})'  # type: ignore[misc]
+
+    # Override the 'construct' method in a way that supports recursive parsing without validation.
+    # Based on https://github.com/samuelcolvin/pydantic/issues/1168#issuecomment-817742836.
+    @classmethod
+    @override
+    def construct(
+        cls: type[ModelT],
+        _fields_set: set[str] | None = None,
+        **values: object,
+    ) -> ModelT:
+        m = cls.__new__(cls)
+        fields_values: dict[str, object] = {}
+
+        config = get_model_config(cls)
+        populate_by_name = (
+            config.allow_population_by_field_name
+            if isinstance(config, _ConfigProtocol)
+            else config.get("populate_by_name")
+        )
+
+        if _fields_set is None:
+            _fields_set = set()
+
+        model_fields = get_model_fields(cls)
+        for name, field in model_fields.items():
+            key = field.alias
+            if key is None or (key not in values and populate_by_name):
+                key = name
+
+            if key in values:
+                fields_values[name] = _construct_field(value=values[key], field=field, key=key)
+                _fields_set.add(name)
+            else:
+                fields_values[name] = field_get_default(field)
+
+        _extra = {}
+        for key, value in values.items():
+            if key not in model_fields:
+                if PYDANTIC_V2:
+                    _extra[key] = value
+                else:
+                    _fields_set.add(key)
+                    fields_values[key] = value
+
+        object.__setattr__(m, "__dict__", fields_values)  # noqa: PLC2801
+
+        if PYDANTIC_V2:
+            # these properties are copied from Pydantic's `model_construct()` method
+            object.__setattr__(m, "__pydantic_private__", None)  # noqa: PLC2801
+            object.__setattr__(m, "__pydantic_extra__", _extra)  # noqa: PLC2801
+            object.__setattr__(m, "__pydantic_fields_set__", _fields_set)  # noqa: PLC2801
+        else:
+            # init_private_attributes() does not exist in v2
+            m._init_private_attributes()  # type: ignore
+
+            # copied from Pydantic v1's `construct()` method
+            object.__setattr__(m, "__fields_set__", _fields_set)  # noqa: PLC2801
+
+        return m
+
+    if not TYPE_CHECKING:
+        # type checkers incorrectly complain about this assignment
+        # because the type signatures are technically different
+        # although not in practice
+        model_construct = construct
+
+    if not PYDANTIC_V2:
+        # we define aliases for some of the new pydantic v2 methods so
+        # that we can just document these methods without having to specify
+        # a specific pydantic version as some users may not know which
+        # pydantic version they are currently using
+
+        @override
+        def model_dump(
+            self,
+            *,
+            mode: Literal["json", "python"] | str = "python",
+            include: IncEx = None,
+            exclude: IncEx = None,
+            by_alias: bool = False,
+            exclude_unset: bool = False,
+            exclude_defaults: bool = False,
+            exclude_none: bool = False,
+            round_trip: bool = False,
+            warnings: bool | Literal["none", "warn", "error"] = True,
+            context: dict[str, Any] | None = None,
+            serialize_as_any: bool = False,
+        ) -> dict[str, Any]:
+            """Usage docs: https://docs.pydantic.dev/2.4/concepts/serialization/#modelmodel_dump
+
+            Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
+
+            Args:
+                mode: The mode in which `to_python` should run.
+                    If mode is 'json', the dictionary will only contain JSON serializable types.
+                    If mode is 'python', the dictionary may contain any Python objects.
+                include: A list of fields to include in the output.
+                exclude: A list of fields to exclude from the output.
+                by_alias: Whether to use the field's alias in the dictionary key if defined.
+                exclude_unset: Whether to exclude fields that are unset or None from the output.
+                exclude_defaults: Whether to exclude fields that are set to their default value from the output.
+                exclude_none: Whether to exclude fields that have a value of `None` from the output.
+                round_trip: Whether to enable serialization and deserialization round-trip support.
+                warnings: Whether to log warnings when invalid fields are encountered.
+
+            Returns:
+                A dictionary representation of the model.
+            """
+            if mode != "python":
+                raise ValueError("mode is only supported in Pydantic v2")
+            if round_trip != False:
+                raise ValueError("round_trip is only supported in Pydantic v2")
+            if warnings != True:
+                raise ValueError("warnings is only supported in Pydantic v2")
+            if context is not None:
+                raise ValueError("context is only supported in Pydantic v2")
+            if serialize_as_any != False:
+                raise ValueError("serialize_as_any is only supported in Pydantic v2")
+            return super().dict(  # pyright: ignore[reportDeprecated]
+                include=include,
+                exclude=exclude,
+                by_alias=by_alias,
+                exclude_unset=exclude_unset,
+                exclude_defaults=exclude_defaults,
+                exclude_none=exclude_none,
+            )
+
+        @override
+        def model_dump_json(
+            self,
+            *,
+            indent: int | None = None,
+            include: IncEx = None,
+            exclude: IncEx = None,
+            by_alias: bool = False,
+            exclude_unset: bool = False,
+            exclude_defaults: bool = False,
+            exclude_none: bool = False,
+            round_trip: bool = False,
+            warnings: bool | Literal["none", "warn", "error"] = True,
+            context: dict[str, Any] | None = None,
+            serialize_as_any: bool = False,
+        ) -> str:
+            """Usage docs: https://docs.pydantic.dev/2.4/concepts/serialization/#modelmodel_dump_json
+
+            Generates a JSON representation of the model using Pydantic's `to_json` method.
+
+            Args:
+                indent: Indentation to use in the JSON output. If None is passed, the output will be compact.
+                include: Field(s) to include in the JSON output. Can take either a string or set of strings.
+                exclude: Field(s) to exclude from the JSON output. Can take either a string or set of strings.
+                by_alias: Whether to serialize using field aliases.
+                exclude_unset: Whether to exclude fields that have not been explicitly set.
+                exclude_defaults: Whether to exclude fields that have the default value.
+                exclude_none: Whether to exclude fields that have a value of `None`.
+                round_trip: Whether to use serialization/deserialization between JSON and class instance.
+                warnings: Whether to show any warnings that occurred during serialization.
+
+            Returns:
+                A JSON string representation of the model.
+            """
+            if round_trip != False:
+                raise ValueError("round_trip is only supported in Pydantic v2")
+            if warnings != True:
+                raise ValueError("warnings is only supported in Pydantic v2")
+            if context is not None:
+                raise ValueError("context is only supported in Pydantic v2")
+            if serialize_as_any != False:
+                raise ValueError("serialize_as_any is only supported in Pydantic v2")
+            return super().json(  # type: ignore[reportDeprecated]
+                indent=indent,
+                include=include,
+                exclude=exclude,
+                by_alias=by_alias,
+                exclude_unset=exclude_unset,
+                exclude_defaults=exclude_defaults,
+                exclude_none=exclude_none,
+            )
+
+
+def _construct_field(value: object, field: FieldInfo, key: str) -> object:
+    if value is None:
+        return field_get_default(field)
+
+    if PYDANTIC_V2:
+        type_ = field.annotation
+    else:
+        type_ = cast(type, field.outer_type_)  # type: ignore
+
+    if type_ is None:
+        raise RuntimeError(f"Unexpected field type is None for {key}")
+
+    return construct_type(value=value, type_=type_)
+
+
+def is_basemodel(type_: type) -> bool:
+    """Returns whether or not the given type is either a `BaseModel` or a union of `BaseModel`"""
+    if is_union(type_):
+        return any(is_basemodel(variant) for variant in get_args(type_))
+
+    return is_basemodel_type(type_)
+
+
+def is_basemodel_type(type_: type) -> TypeGuard[type[BaseModel] | type[GenericModel]]:
+    origin = get_origin(type_) or type_
+    return issubclass(origin, BaseModel) or issubclass(origin, GenericModel)
+
+
+def build(
+    base_model_cls: Callable[P, _BaseModelT],
+    *args: P.args,
+    **kwargs: P.kwargs,
+) -> _BaseModelT:
+    """Construct a BaseModel class without validation.
+
+    This is useful for cases where you need to instantiate a `BaseModel`
+    from an API response as this provides type-safe params which isn't supported
+    by helpers like `construct_type()`.
+
+    ```py
+    build(MyModel, my_field_a="foo", my_field_b=123)
+    ```
+    """
+    if args:
+        raise TypeError(
+            "Received positional arguments which are not supported; Keyword arguments must be used instead",
+        )
+
+    return cast(_BaseModelT, construct_type(type_=base_model_cls, value=kwargs))
+
+
+def construct_type_unchecked(*, value: object, type_: type[_T]) -> _T:
+    """Loose coercion to the expected type with construction of nested values.
+
+    Note: the returned value from this function is not guaranteed to match the
+    given type.
+    """
+    return cast(_T, construct_type(value=value, type_=type_))
+
+
+def construct_type(*, value: object, type_: type) -> object:
+    """Loose coercion to the expected type with construction of nested values.
+
+    If the given value does not match the expected type then it is returned as-is.
+    """
+    # we allow `object` as the input type because otherwise, passing things like
+    # `Literal['value']` will be reported as a type error by type checkers
+    type_ = cast("type[object]", type_)
+
+    # unwrap `Annotated[T, ...]` -> `T`
+    if is_annotated_type(type_):
+        meta: tuple[Any, ...] = get_args(type_)[1:]
+        type_ = extract_type_arg(type_, 0)
+    else:
+        meta = ()
+    # we need to use the origin class for any types that are subscripted generics
+    # e.g. Dict[str, object]
+    origin = get_origin(type_) or type_
+    args = get_args(type_)
+
+    if is_union(origin):
+        try:
+            return validate_type(type_=cast("type[object]", type_), value=value)
+        except Exception:
+            pass
+
+        # if the type is a discriminated union then we want to construct the right variant
+        # in the union, even if the data doesn't match exactly, otherwise we'd break code
+        # that relies on the constructed class types, e.g.
+        #
+        # class FooType:
+        #   kind: Literal['foo']
+        #   value: str
+        #
+        # class BarType:
+        #   kind: Literal['bar']
+        #   value: int
+        #
+        # without this block, if the data we get is something like `{'kind': 'bar', 'value': 'foo'}` then
+        # we'd end up constructing `FooType` when it should be `BarType`.
+        discriminator = _build_discriminated_union_meta(union=type_, meta_annotations=meta)
+        if discriminator and is_mapping(value):
+            variant_value = value.get(discriminator.field_alias_from or discriminator.field_name)
+            if variant_value and isinstance(variant_value, str):
+                variant_type = discriminator.mapping.get(variant_value)
+                if variant_type:
+                    return construct_type(type_=variant_type, value=value)
+
+        # if the data is not valid, use the first variant that doesn't fail while deserializing
+        for variant in args:
+            try:
+                return construct_type(value=value, type_=variant)
+            except Exception:
+                continue
+
+        raise RuntimeError(f"Could not convert data into a valid instance of {type_}")
+    if origin == dict:
+        if not is_mapping(value):
+            return value
+
+        _, items_type = get_args(type_)  # Dict[_, items_type]
+        return {key: construct_type(value=item, type_=items_type) for key, item in value.items()}
+
+    if not is_literal_type(type_) and (issubclass(origin, BaseModel) or issubclass(origin, GenericModel)):
+        if is_list(value):
+            return [cast(Any, type_).construct(**entry) if is_mapping(entry) else entry for entry in value]
+
+        if is_mapping(value):
+            if issubclass(type_, BaseModel):
+                return type_.construct(**value)  # type: ignore[arg-type]
+
+            return cast(Any, type_).construct(**value)
+
+    if origin == list:
+        if not is_list(value):
+            return value
+
+        inner_type = args[0]  # List[inner_type]
+        return [construct_type(value=entry, type_=inner_type) for entry in value]
+
+    if origin == float:
+        if isinstance(value, int):
+            coerced = float(value)
+            if coerced != value:
+                return value
+            return coerced
+
+        return value
+
+    if type_ == datetime:
+        try:
+            return parse_datetime(value)  # type: ignore
+        except Exception:
+            return value
+
+    if type_ == date:
+        try:
+            return parse_date(value)  # type: ignore
+        except Exception:
+            return value
+
+    return value
+
+
+@runtime_checkable
+class CachedDiscriminatorType(Protocol):
+    __discriminator__: DiscriminatorDetails
+
+
+class DiscriminatorDetails:
+    field_name: str
+    """The name of the discriminator field in the variant class, e.g.
+
+    ```py
+    class Foo(BaseModel):
+        type: Literal['foo']
+    ```
+
+    Will result in field_name='type'
+    """
+
+    field_alias_from: str | None
+    """The name of the discriminator field in the API response, e.g.
+
+    ```py
+    class Foo(BaseModel):
+        type: Literal['foo'] = Field(alias='type_from_api')
+    ```
+
+    Will result in field_alias_from='type_from_api'
+    """
+
+    mapping: dict[str, type]
+    """Mapping of discriminator value to variant type, e.g.
+
+    {'foo': FooVariant, 'bar': BarVariant}
+    """
+
+    def __init__(
+        self,
+        *,
+        mapping: dict[str, type],
+        discriminator_field: str,
+        discriminator_alias: str | None,
+    ) -> None:
+        self.mapping = mapping
+        self.field_name = discriminator_field
+        self.field_alias_from = discriminator_alias
+
+
+def _build_discriminated_union_meta(*, union: type, meta_annotations: tuple[Any, ...]) -> DiscriminatorDetails | None:
+    if isinstance(union, CachedDiscriminatorType):
+        return union.__discriminator__
+
+    discriminator_field_name: str | None = None
+
+    for annotation in meta_annotations:
+        if isinstance(annotation, PropertyInfo) and annotation.discriminator is not None:
+            discriminator_field_name = annotation.discriminator
+            break
+
+    if not discriminator_field_name:
+        return None
+
+    mapping: dict[str, type] = {}
+    discriminator_alias: str | None = None
+
+    for variant in get_args(union):
+        variant = strip_annotated_type(variant)
+        if is_basemodel_type(variant):
+            if PYDANTIC_V2:
+                field = _extract_field_schema_pv2(variant, discriminator_field_name)
+                if not field:
+                    continue
+
+                # Note: if one variant defines an alias then they all should
+                discriminator_alias = field.get("serialization_alias")
+
+                field_schema = field["schema"]
+
+                if field_schema["type"] == "literal":
+                    for entry in cast("LiteralSchema", field_schema)["expected"]:
+                        if isinstance(entry, str):
+                            mapping[entry] = variant
+            else:
+                field_info = cast("dict[str, FieldInfo]", variant.__fields__).get(discriminator_field_name)  # pyright: ignore[reportDeprecated, reportUnnecessaryCast]
+                if not field_info:
+                    continue
+
+                # Note: if one variant defines an alias then they all should
+                discriminator_alias = field_info.alias
+
+                if field_info.annotation and is_literal_type(field_info.annotation):
+                    for entry in get_args(field_info.annotation):
+                        if isinstance(entry, str):
+                            mapping[entry] = variant
+
+    if not mapping:
+        return None
+
+    details = DiscriminatorDetails(
+        mapping=mapping,
+        discriminator_field=discriminator_field_name,
+        discriminator_alias=discriminator_alias,
+    )
+    cast(CachedDiscriminatorType, union).__discriminator__ = details
+    return details
+
+
+def _extract_field_schema_pv2(model: type[BaseModel], field_name: str) -> ModelField | None:
+    schema = model.__pydantic_core_schema__
+    if schema["type"] != "model":
+        return None
+
+    fields_schema = schema["schema"]
+    if fields_schema["type"] != "model-fields":
+        return None
+
+    fields_schema = cast("ModelFieldsSchema", fields_schema)
+
+    field = fields_schema["fields"].get(field_name)
+    if not field:
+        return None
+
+    return cast("ModelField", field)  # pyright: ignore[reportUnnecessaryCast]
+
+
+def validate_type(*, type_: type[_T], value: object) -> _T:
+    """Strict validation that the given value matches the expected type"""
+    if inspect.isclass(type_) and issubclass(type_, pydantic.BaseModel):
+        return cast(_T, parse_obj(type_, value))
+
+    return cast(_T, _validate_non_model_type(type_=type_, value=value))
+
+
+# our use of subclasssing here causes weirdness for type checkers,
+# so we just pretend that we don't subclass
+if TYPE_CHECKING:
+    GenericModel = BaseModel
+else:
+
+    class GenericModel(BaseGenericModel, BaseModel):
+        pass
+
+
+if PYDANTIC_V2:
+    from pydantic import TypeAdapter
+
+    def _validate_non_model_type(*, type_: type[_T], value: object) -> _T:
+        return TypeAdapter(type_).validate_python(value)
+
+elif not TYPE_CHECKING:
+
+    class TypeAdapter(Generic[_T]):
+        """Used as a placeholder to easily convert runtime types to a Pydantic format
+        to provide validation.
+
+        For example:
+        ```py
+        validated = RootModel[int](__root__="5").__root__
+        # validated: 5
+        ```
+        """
+
+        def __init__(self, type_: type[_T]):
+            self.type_ = type_
+
+        def validate_python(self, value: Any) -> _T:
+            if not isinstance(value, self.type_):
+                raise ValueError(f"Invalid type: {value} is not of type {self.type_}")
+            return value
+
+    def _validate_non_model_type(*, type_: type[_T], value: object) -> _T:
+        return TypeAdapter(type_).validate_python(value)

+ 81 - 18
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/core/_base_type.py

@@ -1,11 +1,21 @@
 from __future__ import annotations
 
-from collections.abc import Mapping, Sequence
+from collections.abc import Callable, Mapping, Sequence
 from os import PathLike
-from typing import IO, TYPE_CHECKING, Any, Literal, TypeVar, Union
+from typing import (
+    IO,
+    TYPE_CHECKING,
+    Any,
+    Literal,
+    Optional,
+    TypeAlias,
+    TypeVar,
+    Union,
+)
 
 import pydantic
-from typing_extensions import override
+from httpx import Response
+from typing_extensions import Protocol, TypedDict, override, runtime_checkable
 
 Query = Mapping[str, object]
 Body = object
@@ -22,7 +32,7 @@ else:
 
 
 # Sentinel class used until PEP 0661 is accepted
-class NotGiven(pydantic.BaseModel):
+class NotGiven:
     """
     A sentinel singleton class used to distinguish omitted keyword arguments
     from those passed in with the value None (which may have different behavior).
@@ -50,7 +60,7 @@ NotGivenOr = Union[_T, NotGiven]
 NOT_GIVEN = NotGiven()
 
 
-class Omit(pydantic.BaseModel):
+class Omit:
     """In certain situations you need to be able to represent a case where a default value has
     to be explicitly removed and `None` is not an appropriate substitute, for example:
 
@@ -71,37 +81,90 @@ class Omit(pydantic.BaseModel):
         return False
 
 
+@runtime_checkable
+class ModelBuilderProtocol(Protocol):
+    @classmethod
+    def build(
+        cls: type[_T],
+        *,
+        response: Response,
+        data: object,
+    ) -> _T: ...
+
+
 Headers = Mapping[str, Union[str, Omit]]
 
+
+class HeadersLikeProtocol(Protocol):
+    def get(self, __key: str) -> str | None: ...
+
+
+HeadersLike = Union[Headers, HeadersLikeProtocol]
+
 ResponseT = TypeVar(
     "ResponseT",
-    bound="Union[str, None, BaseModel, list[Any], Dict[str, Any], Response, UnknownResponse, ModelBuilderProtocol,"
-    " BinaryResponseContent]",
+    bound="Union[str, None, BaseModel, list[Any], dict[str, Any], Response, UnknownResponse, ModelBuilderProtocol, BinaryResponseContent]",  # noqa: E501
 )
 
+StrBytesIntFloat = Union[str, bytes, int, float]
+
+# Note: copied from Pydantic
+# https://github.com/pydantic/pydantic/blob/32ea570bf96e84234d2992e1ddf40ab8a565925a/pydantic/main.py#L49
+IncEx: TypeAlias = "set[int] | set[str] | dict[int, Any] | dict[str, Any] | None"
+
+PostParser = Callable[[Any], Any]
+
+
+@runtime_checkable
+class InheritsGeneric(Protocol):
+    """Represents a type that has inherited from `Generic`
+
+    The `__orig_bases__` property can be used to determine the resolved
+    type variable for a given base class.
+    """
+
+    __orig_bases__: tuple[_GenericAlias]
+
+
+class _GenericAlias(Protocol):
+    __origin__: type[object]
+
+
+class HttpxSendArgs(TypedDict, total=False):
+    auth: httpx.Auth
+
+
 # for user input files
 if TYPE_CHECKING:
+    Base64FileInput = Union[IO[bytes], PathLike[str]]
     FileContent = Union[IO[bytes], bytes, PathLike[str]]
 else:
+    Base64FileInput = Union[IO[bytes], PathLike]
     FileContent = Union[IO[bytes], bytes, PathLike]
 
 FileTypes = Union[
-    FileContent,  # file content
-    tuple[str, FileContent],  # (filename, file)
-    tuple[str, FileContent, str],  # (filename, file , content_type)
-    tuple[str, FileContent, str, Mapping[str, str]],  # (filename, file , content_type, headers)
+    # file (or bytes)
+    FileContent,
+    # (filename, file (or bytes))
+    tuple[Optional[str], FileContent],
+    # (filename, file (or bytes), content_type)
+    tuple[Optional[str], FileContent, Optional[str]],
+    # (filename, file (or bytes), content_type, headers)
+    tuple[Optional[str], FileContent, Optional[str], Mapping[str, str]],
 ]
-
 RequestFiles = Union[Mapping[str, FileTypes], Sequence[tuple[str, FileTypes]]]
 
-# for httpx client supported files
-
+# duplicate of the above but without our custom file support
 HttpxFileContent = Union[bytes, IO[bytes]]
 HttpxFileTypes = Union[
-    FileContent,  # file content
-    tuple[str, HttpxFileContent],  # (filename, file)
-    tuple[str, HttpxFileContent, str],  # (filename, file , content_type)
-    tuple[str, HttpxFileContent, str, Mapping[str, str]],  # (filename, file , content_type, headers)
+    # file (or bytes)
+    HttpxFileContent,
+    # (filename, file (or bytes))
+    tuple[Optional[str], HttpxFileContent],
+    # (filename, file (or bytes), content_type)
+    tuple[Optional[str], HttpxFileContent, Optional[str]],
+    # (filename, file (or bytes), content_type, headers)
+    tuple[Optional[str], HttpxFileContent, Optional[str], Mapping[str, str]],
 ]
 
 HttpxRequestFiles = Union[Mapping[str, HttpxFileTypes], Sequence[tuple[str, HttpxFileTypes]]]

+ 12 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/core/_constants.py

@@ -0,0 +1,12 @@
+import httpx
+
+RAW_RESPONSE_HEADER = "X-Stainless-Raw-Response"
+# 通过 `Timeout` 控制接口`connect` 和 `read` 超时时间,默认为`timeout=300.0, connect=8.0`
+ZHIPUAI_DEFAULT_TIMEOUT = httpx.Timeout(timeout=300.0, connect=8.0)
+# 通过 `retry` 参数控制重试次数,默认为3次
+ZHIPUAI_DEFAULT_MAX_RETRIES = 3
+# 通过 `Limits` 控制最大连接数和保持连接数,默认为`max_connections=50, max_keepalive_connections=10`
+ZHIPUAI_DEFAULT_LIMITS = httpx.Limits(max_connections=50, max_keepalive_connections=10)
+
+INITIAL_RETRY_DELAY = 0.5
+MAX_RETRY_DELAY = 8.0

+ 10 - 7
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/core/_errors.py

@@ -13,6 +13,7 @@ __all__ = [
     "APIResponseError",
     "APIResponseValidationError",
     "APITimeoutError",
+    "APIConnectionError",
 ]
 
 
@@ -24,7 +25,7 @@ class ZhipuAIError(Exception):
         super().__init__(message)
 
 
-class APIStatusError(Exception):
+class APIStatusError(ZhipuAIError):
     response: httpx.Response
     status_code: int
 
@@ -49,7 +50,7 @@ class APIInternalError(APIStatusError): ...
 class APIServerFlowExceedError(APIStatusError): ...
 
 
-class APIResponseError(Exception):
+class APIResponseError(ZhipuAIError):
     message: str
     request: httpx.Request
     json_data: object
@@ -75,9 +76,11 @@ class APIResponseValidationError(APIResponseError):
         self.status_code = response.status_code
 
 
-class APITimeoutError(Exception):
-    request: httpx.Request
+class APIConnectionError(APIResponseError):
+    def __init__(self, *, message: str = "Connection error.", request: httpx.Request) -> None:
+        super().__init__(message, request, json_data=None)
 
-    def __init__(self, request: httpx.Request):
-        self.request = request
-        super().__init__("Request Timeout")
+
+class APITimeoutError(APIConnectionError):
+    def __init__(self, request: httpx.Request) -> None:
+        super().__init__(message="Request timed out.", request=request)

+ 56 - 22
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/core/_files.py

@@ -2,40 +2,74 @@ from __future__ import annotations
 
 import io
 import os
-from collections.abc import Mapping, Sequence
-from pathlib import Path
+import pathlib
+from typing import TypeGuard, overload
 
-from ._base_type import FileTypes, HttpxFileTypes, HttpxRequestFiles, RequestFiles
+from ._base_type import (
+    Base64FileInput,
+    FileContent,
+    FileTypes,
+    HttpxFileContent,
+    HttpxFileTypes,
+    HttpxRequestFiles,
+    RequestFiles,
+)
+from ._utils import is_mapping_t, is_sequence_t, is_tuple_t
 
 
-def is_file_content(obj: object) -> bool:
+def is_base64_file_input(obj: object) -> TypeGuard[Base64FileInput]:
+    return isinstance(obj, io.IOBase | os.PathLike)
+
+
+def is_file_content(obj: object) -> TypeGuard[FileContent]:
     return isinstance(obj, bytes | tuple | io.IOBase | os.PathLike)
 
 
-def _transform_file(file: FileTypes) -> HttpxFileTypes:
-    if is_file_content(file):
-        if isinstance(file, os.PathLike):
-            path = Path(file)
-            return path.name, path.read_bytes()
-        else:
-            return file
-    if isinstance(file, tuple):
-        if isinstance(file[1], os.PathLike):
-            return (file[0], Path(file[1]).read_bytes(), *file[2:])
-        else:
-            return (file[0], file[1], *file[2:])
-    else:
-        raise TypeError(f"Unexpected input file with type {type(file)},Expected FileContent type or tuple type")
+def assert_is_file_content(obj: object, *, key: str | None = None) -> None:
+    if not is_file_content(obj):
+        prefix = f"Expected entry at `{key}`" if key is not None else f"Expected file input `{obj!r}`"
+        raise RuntimeError(
+            f"{prefix} to be bytes, an io.IOBase instance, PathLike or a tuple but received {type(obj)} instead. See https://github.com/openai/openai-python/tree/main#file-uploads"
+        ) from None
 
 
-def make_httpx_files(files: RequestFiles | None) -> HttpxRequestFiles | None:
+@overload
+def to_httpx_files(files: None) -> None: ...
+
+
+@overload
+def to_httpx_files(files: RequestFiles) -> HttpxRequestFiles: ...
+
+
+def to_httpx_files(files: RequestFiles | None) -> HttpxRequestFiles | None:
     if files is None:
         return None
 
-    if isinstance(files, Mapping):
+    if is_mapping_t(files):
         files = {key: _transform_file(file) for key, file in files.items()}
-    elif isinstance(files, Sequence):
+    elif is_sequence_t(files):
         files = [(key, _transform_file(file)) for key, file in files]
     else:
-        raise TypeError(f"Unexpected input file with type {type(files)}, excepted Mapping or Sequence")
+        raise TypeError(f"Unexpected file type input {type(files)}, expected mapping or sequence")
+
     return files
+
+
+def _transform_file(file: FileTypes) -> HttpxFileTypes:
+    if is_file_content(file):
+        if isinstance(file, os.PathLike):
+            path = pathlib.Path(file)
+            return (path.name, path.read_bytes())
+
+        return file
+
+    if is_tuple_t(file):
+        return (file[0], _read_file_content(file[1]), *file[2:])
+
+    raise TypeError("Expected file types input to be a FileContent type or to be a tuple")
+
+
+def _read_file_content(file: FileContent) -> HttpxFileContent:
+    if isinstance(file, os.PathLike):
+        return pathlib.Path(file).read_bytes()
+    return file

+ 650 - 106
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/core/_http_client.py

@@ -1,23 +1,70 @@
 from __future__ import annotations
 
 import inspect
-from collections.abc import Mapping
-from typing import Any, Union, cast
+import logging
+import time
+import warnings
+from collections.abc import Iterator, Mapping
+from itertools import starmap
+from random import random
+from typing import TYPE_CHECKING, Any, Generic, Literal, Optional, TypeVar, Union, cast, overload
 
 import httpx
 import pydantic
 from httpx import URL, Timeout
-from tenacity import retry
-from tenacity.stop import stop_after_attempt
-
-from . import _errors
-from ._base_type import NOT_GIVEN, AnyMapping, Body, Data, Headers, NotGiven, Query, RequestFiles, ResponseT
-from ._errors import APIResponseValidationError, APIStatusError, APITimeoutError
-from ._files import make_httpx_files
-from ._request_opt import ClientRequestParam, UserRequestInput
-from ._response import HttpResponse
+
+from . import _errors, get_origin
+from ._base_compat import model_copy
+from ._base_models import GenericModel, construct_type, validate_type
+from ._base_type import (
+    NOT_GIVEN,
+    AnyMapping,
+    Body,
+    Data,
+    Headers,
+    HttpxSendArgs,
+    ModelBuilderProtocol,
+    NotGiven,
+    Omit,
+    PostParser,
+    Query,
+    RequestFiles,
+    ResponseT,
+)
+from ._constants import (
+    INITIAL_RETRY_DELAY,
+    MAX_RETRY_DELAY,
+    RAW_RESPONSE_HEADER,
+    ZHIPUAI_DEFAULT_LIMITS,
+    ZHIPUAI_DEFAULT_MAX_RETRIES,
+    ZHIPUAI_DEFAULT_TIMEOUT,
+)
+from ._errors import APIConnectionError, APIResponseValidationError, APIStatusError, APITimeoutError
+from ._files import to_httpx_files
+from ._legacy_response import LegacyAPIResponse
+from ._request_opt import FinalRequestOptions, UserRequestInput
+from ._response import APIResponse, BaseAPIResponse, extract_response_type
 from ._sse_client import StreamResponse
-from ._utils import flatten
+from ._utils import flatten, is_given, is_mapping
+
+log: logging.Logger = logging.getLogger(__name__)
+
+# TODO: make base page type vars covariant
+SyncPageT = TypeVar("SyncPageT", bound="BaseSyncPage[Any]")
+# AsyncPageT = TypeVar("AsyncPageT", bound="BaseAsyncPage[Any]")
+
+_T = TypeVar("_T")
+_T_co = TypeVar("_T_co", covariant=True)
+
+if TYPE_CHECKING:
+    from httpx._config import DEFAULT_TIMEOUT_CONFIG as HTTPX_DEFAULT_TIMEOUT
+else:
+    try:
+        from httpx._config import DEFAULT_TIMEOUT_CONFIG as HTTPX_DEFAULT_TIMEOUT
+    except ImportError:
+        # taken from https://github.com/encode/httpx/blob/3ba5fe0d7ac70222590e759c31442b1cab263791/httpx/_config.py#L366
+        HTTPX_DEFAULT_TIMEOUT = Timeout(5.0)
+
 
 headers = {
     "Accept": "application/json",
@@ -25,50 +72,180 @@ headers = {
 }
 
 
-def _merge_map(map1: Mapping, map2: Mapping) -> Mapping:
-    merged = {**map1, **map2}
-    return {key: val for key, val in merged.items() if val is not None}
+class PageInfo:
+    """Stores the necessary information to build the request to retrieve the next page.
 
+    Either `url` or `params` must be set.
+    """
 
-from itertools import starmap
+    url: URL | NotGiven
+    params: Query | NotGiven
+
+    @overload
+    def __init__(
+        self,
+        *,
+        url: URL,
+    ) -> None: ...
+
+    @overload
+    def __init__(
+        self,
+        *,
+        params: Query,
+    ) -> None: ...
+
+    def __init__(
+        self,
+        *,
+        url: URL | NotGiven = NOT_GIVEN,
+        params: Query | NotGiven = NOT_GIVEN,
+    ) -> None:
+        self.url = url
+        self.params = params
+
+
+class BasePage(GenericModel, Generic[_T]):
+    """
+    Defines the core interface for pagination.
+
+    Type Args:
+        ModelT: The pydantic model that represents an item in the response.
+
+    Methods:
+        has_next_page(): Check if there is another page available
+        next_page_info(): Get the necessary information to make a request for the next page
+    """
+
+    _options: FinalRequestOptions = pydantic.PrivateAttr()
+    _model: type[_T] = pydantic.PrivateAttr()
 
-from httpx._config import DEFAULT_TIMEOUT_CONFIG as HTTPX_DEFAULT_TIMEOUT
+    def has_next_page(self) -> bool:
+        items = self._get_page_items()
+        if not items:
+            return False
+        return self.next_page_info() is not None
 
-ZHIPUAI_DEFAULT_TIMEOUT = httpx.Timeout(timeout=300.0, connect=8.0)
-ZHIPUAI_DEFAULT_MAX_RETRIES = 3
-ZHIPUAI_DEFAULT_LIMITS = httpx.Limits(max_connections=5, max_keepalive_connections=5)
+    def next_page_info(self) -> Optional[PageInfo]: ...
+
+    def _get_page_items(self) -> Iterable[_T]:  # type: ignore[empty-body]
+        ...
+
+    def _params_from_url(self, url: URL) -> httpx.QueryParams:
+        # TODO: do we have to preprocess params here?
+        return httpx.QueryParams(cast(Any, self._options.params)).merge(url.params)
+
+    def _info_to_options(self, info: PageInfo) -> FinalRequestOptions:
+        options = model_copy(self._options)
+        options._strip_raw_response_header()
+
+        if not isinstance(info.params, NotGiven):
+            options.params = {**options.params, **info.params}
+            return options
+
+        if not isinstance(info.url, NotGiven):
+            params = self._params_from_url(info.url)
+            url = info.url.copy_with(params=params)
+            options.params = dict(url.params)
+            options.url = str(url)
+            return options
+
+        raise ValueError("Unexpected PageInfo state")
+
+
+class BaseSyncPage(BasePage[_T], Generic[_T]):
+    _client: HttpClient = pydantic.PrivateAttr()
+
+    def _set_private_attributes(
+        self,
+        client: HttpClient,
+        model: type[_T],
+        options: FinalRequestOptions,
+    ) -> None:
+        self._model = model
+        self._client = client
+        self._options = options
+
+    # Pydantic uses a custom `__iter__` method to support casting BaseModels
+    # to dictionaries. e.g. dict(model).
+    # As we want to support `for item in page`, this is inherently incompatible
+    # with the default pydantic behaviour. It is not possible to support both
+    # use cases at once. Fortunately, this is not a big deal as all other pydantic
+    # methods should continue to work as expected as there is an alternative method
+    # to cast a model to a dictionary, model.dict(), which is used internally
+    # by pydantic.
+    def __iter__(self) -> Iterator[_T]:  # type: ignore
+        for page in self.iter_pages():
+            yield from page._get_page_items()
+
+    def iter_pages(self: SyncPageT) -> Iterator[SyncPageT]:
+        page = self
+        while True:
+            yield page
+            if page.has_next_page():
+                page = page.get_next_page()
+            else:
+                return
+
+    def get_next_page(self: SyncPageT) -> SyncPageT:
+        info = self.next_page_info()
+        if not info:
+            raise RuntimeError(
+                "No next page expected; please check `.has_next_page()` before calling `.get_next_page()`."
+            )
+
+        options = self._info_to_options(info)
+        return self._client._request_api_list(self._model, page=self.__class__, options=options)
 
 
 class HttpClient:
     _client: httpx.Client
     _version: str
     _base_url: URL
-
+    max_retries: int
     timeout: Union[float, Timeout, None]
     _limits: httpx.Limits
     _has_custom_http_client: bool
     _default_stream_cls: type[StreamResponse[Any]] | None = None
 
+    _strict_response_validation: bool
+
     def __init__(
         self,
         *,
         version: str,
         base_url: URL,
+        _strict_response_validation: bool,
+        max_retries: int = ZHIPUAI_DEFAULT_MAX_RETRIES,
         timeout: Union[float, Timeout, None],
+        limits: httpx.Limits | None = None,
         custom_httpx_client: httpx.Client | None = None,
         custom_headers: Mapping[str, str] | None = None,
     ) -> None:
-        if timeout is None or isinstance(timeout, NotGiven):
+        if limits is not None:
+            warnings.warn(
+                "The `connection_pool_limits` argument is deprecated. The `http_client` argument should be passed instead",  # noqa: E501
+                category=DeprecationWarning,
+                stacklevel=3,
+            )
+            if custom_httpx_client is not None:
+                raise ValueError("The `http_client` argument is mutually exclusive with `connection_pool_limits`")
+        else:
+            limits = ZHIPUAI_DEFAULT_LIMITS
+
+        if not is_given(timeout):
             if custom_httpx_client and custom_httpx_client.timeout != HTTPX_DEFAULT_TIMEOUT:
                 timeout = custom_httpx_client.timeout
             else:
                 timeout = ZHIPUAI_DEFAULT_TIMEOUT
-        self.timeout = cast(Timeout, timeout)
+        self.max_retries = max_retries
+        self.timeout = timeout
+        self._limits = limits
         self._has_custom_http_client = bool(custom_httpx_client)
         self._client = custom_httpx_client or httpx.Client(
             base_url=base_url,
             timeout=self.timeout,
-            limits=ZHIPUAI_DEFAULT_LIMITS,
+            limits=limits,
         )
         self._version = version
         url = URL(url=base_url)
@@ -76,6 +253,7 @@ class HttpClient:
             url = url.copy_with(raw_path=url.raw_path + b"/")
         self._base_url = url
         self._custom_headers = custom_headers or {}
+        self._strict_response_validation = _strict_response_validation
 
     def _prepare_url(self, url: str) -> URL:
         sub_url = URL(url)
@@ -93,55 +271,101 @@ class HttpClient:
             "ZhipuAI-SDK-Ver": self._version,
             "source_type": "zhipu-sdk-python",
             "x-request-sdk": "zhipu-sdk-python",
-            **self._auth_headers,
+            **self.auth_headers,
             **self._custom_headers,
         }
 
     @property
-    def _auth_headers(self):
+    def custom_auth(self) -> httpx.Auth | None:
+        return None
+
+    @property
+    def auth_headers(self):
         return {}
 
-    def _prepare_headers(self, request_param: ClientRequestParam) -> httpx.Headers:
-        custom_headers = request_param.headers or {}
-        headers_dict = _merge_map(self._default_headers, custom_headers)
+    def _prepare_headers(self, options: FinalRequestOptions) -> httpx.Headers:
+        custom_headers = options.headers or {}
+        headers_dict = _merge_mappings(self._default_headers, custom_headers)
 
         httpx_headers = httpx.Headers(headers_dict)
 
         return httpx_headers
 
-    def _prepare_request(self, request_param: ClientRequestParam) -> httpx.Request:
+    def _remaining_retries(
+        self,
+        remaining_retries: Optional[int],
+        options: FinalRequestOptions,
+    ) -> int:
+        return remaining_retries if remaining_retries is not None else options.get_max_retries(self.max_retries)
+
+    def _calculate_retry_timeout(
+        self,
+        remaining_retries: int,
+        options: FinalRequestOptions,
+        response_headers: Optional[httpx.Headers] = None,
+    ) -> float:
+        max_retries = options.get_max_retries(self.max_retries)
+
+        # If the API asks us to wait a certain amount of time (and it's a reasonable amount), just do what it says.
+        # retry_after = self._parse_retry_after_header(response_headers)
+        # if retry_after is not None and 0 < retry_after <= 60:
+        #     return retry_after
+
+        nb_retries = max_retries - remaining_retries
+
+        # Apply exponential backoff, but not more than the max.
+        sleep_seconds = min(INITIAL_RETRY_DELAY * pow(2.0, nb_retries), MAX_RETRY_DELAY)
+
+        # Apply some jitter, plus-or-minus half a second.
+        jitter = 1 - 0.25 * random()
+        timeout = sleep_seconds * jitter
+        return max(timeout, 0)
+
+    def _build_request(self, options: FinalRequestOptions) -> httpx.Request:
         kwargs: dict[str, Any] = {}
-        json_data = request_param.json_data
-        headers = self._prepare_headers(request_param)
-        url = self._prepare_url(request_param.url)
-        json_data = request_param.json_data
+        headers = self._prepare_headers(options)
+        url = self._prepare_url(options.url)
+        json_data = options.json_data
+        if options.extra_json is not None:
+            if json_data is None:
+                json_data = cast(Body, options.extra_json)
+            elif is_mapping(json_data):
+                json_data = _merge_mappings(json_data, options.extra_json)
+            else:
+                raise RuntimeError(f"Unexpected JSON data type, {type(json_data)}, cannot merge with `extra_body`")
+
+        content_type = headers.get("Content-Type")
+        # multipart/form-data; boundary=---abc--
         if headers.get("Content-Type") == "multipart/form-data":
-            headers.pop("Content-Type")
+            if "boundary" not in content_type:
+                # only remove the header if the boundary hasn't been explicitly set
+                # as the caller doesn't want httpx to come up with their own boundary
+                headers.pop("Content-Type")
 
             if json_data:
                 kwargs["data"] = self._make_multipartform(json_data)
 
         return self._client.build_request(
             headers=headers,
-            timeout=self.timeout if isinstance(request_param.timeout, NotGiven) else request_param.timeout,
-            method=request_param.method,
+            timeout=self.timeout if isinstance(options.timeout, NotGiven) else options.timeout,
+            method=options.method,
             url=url,
             json=json_data,
-            files=request_param.files,
-            params=request_param.params,
+            files=options.files,
+            params=options.params,
             **kwargs,
         )
 
-    def _object_to_formdata(self, key: str, value: Data | Mapping[object, object]) -> list[tuple[str, str]]:
+    def _object_to_formfata(self, key: str, value: Data | Mapping[object, object]) -> list[tuple[str, str]]:
         items = []
 
         if isinstance(value, Mapping):
             for k, v in value.items():
-                items.extend(self._object_to_formdata(f"{key}[{k}]", v))
+                items.extend(self._object_to_formfata(f"{key}[{k}]", v))
             return items
         if isinstance(value, list | tuple):
             for v in value:
-                items.extend(self._object_to_formdata(key + "[]", v))
+                items.extend(self._object_to_formfata(key + "[]", v))
             return items
 
         def _primitive_value_to_str(val) -> str:
@@ -161,7 +385,7 @@ class HttpClient:
         return [(key, str_data)]
 
     def _make_multipartform(self, data: Mapping[object, object]) -> dict[str, object]:
-        items = flatten(list(starmap(self._object_to_formdata, data.items())))
+        items = flatten(list(starmap(self._object_to_formfata, data.items())))
 
         serialized: dict[str, object] = {}
         for key, value in items:
@@ -170,20 +394,6 @@ class HttpClient:
             serialized[key] = value
         return serialized
 
-    def _parse_response(
-        self,
-        *,
-        cast_type: type[ResponseT],
-        response: httpx.Response,
-        enable_stream: bool,
-        request_param: ClientRequestParam,
-        stream_cls: type[StreamResponse[Any]] | None = None,
-    ) -> HttpResponse:
-        http_response = HttpResponse(
-            raw_response=response, cast_type=cast_type, client=self, enable_stream=enable_stream, stream_cls=stream_cls
-        )
-        return http_response.parse()
-
     def _process_response_data(
         self,
         *,
@@ -194,14 +404,58 @@ class HttpClient:
         if data is None:
             return cast(ResponseT, None)
 
+        if cast_type is object:
+            return cast(ResponseT, data)
+
         try:
-            if inspect.isclass(cast_type) and issubclass(cast_type, pydantic.BaseModel):
-                return cast(ResponseT, cast_type.validate(data))
+            if inspect.isclass(cast_type) and issubclass(cast_type, ModelBuilderProtocol):
+                return cast(ResponseT, cast_type.build(response=response, data=data))
+
+            if self._strict_response_validation:
+                return cast(ResponseT, validate_type(type_=cast_type, value=data))
 
-            return cast(ResponseT, pydantic.TypeAdapter(cast_type).validate_python(data))
+            return cast(ResponseT, construct_type(type_=cast_type, value=data))
         except pydantic.ValidationError as err:
             raise APIResponseValidationError(response=response, json_data=data) from err
 
+    def _should_stream_response_body(self, request: httpx.Request) -> bool:
+        return request.headers.get(RAW_RESPONSE_HEADER) == "stream"  # type: ignore[no-any-return]
+
+    def _should_retry(self, response: httpx.Response) -> bool:
+        # Note: this is not a standard header
+        should_retry_header = response.headers.get("x-should-retry")
+
+        # If the server explicitly says whether or not to retry, obey.
+        if should_retry_header == "true":
+            log.debug("Retrying as header `x-should-retry` is set to `true`")
+            return True
+        if should_retry_header == "false":
+            log.debug("Not retrying as header `x-should-retry` is set to `false`")
+            return False
+
+        # Retry on request timeouts.
+        if response.status_code == 408:
+            log.debug("Retrying due to status code %i", response.status_code)
+            return True
+
+        # Retry on lock timeouts.
+        if response.status_code == 409:
+            log.debug("Retrying due to status code %i", response.status_code)
+            return True
+
+        # Retry on rate limits.
+        if response.status_code == 429:
+            log.debug("Retrying due to status code %i", response.status_code)
+            return True
+
+        # Retry internal errors.
+        if response.status_code >= 500:
+            log.debug("Retrying due to status code %i", response.status_code)
+            return True
+
+        log.debug("Not retrying")
+        return False
+
     def is_closed(self) -> bool:
         return self._client.is_closed
 
@@ -214,117 +468,385 @@ class HttpClient:
     def __exit__(self, exc_type, exc_val, exc_tb):
         self.close()
 
-    @retry(stop=stop_after_attempt(ZHIPUAI_DEFAULT_MAX_RETRIES))
     def request(
+        self,
+        cast_type: type[ResponseT],
+        options: FinalRequestOptions,
+        remaining_retries: Optional[int] = None,
+        *,
+        stream: bool = False,
+        stream_cls: type[StreamResponse] | None = None,
+    ) -> ResponseT | StreamResponse:
+        return self._request(
+            cast_type=cast_type,
+            options=options,
+            stream=stream,
+            stream_cls=stream_cls,
+            remaining_retries=remaining_retries,
+        )
+
+    def _request(
         self,
         *,
         cast_type: type[ResponseT],
-        params: ClientRequestParam,
-        enable_stream: bool = False,
-        stream_cls: type[StreamResponse[Any]] | None = None,
+        options: FinalRequestOptions,
+        remaining_retries: int | None,
+        stream: bool,
+        stream_cls: type[StreamResponse] | None,
     ) -> ResponseT | StreamResponse:
-        request = self._prepare_request(params)
+        retries = self._remaining_retries(remaining_retries, options)
+        request = self._build_request(options)
 
+        kwargs: HttpxSendArgs = {}
+        if self.custom_auth is not None:
+            kwargs["auth"] = self.custom_auth
         try:
             response = self._client.send(
                 request,
-                stream=enable_stream,
+                stream=stream or self._should_stream_response_body(request=request),
+                **kwargs,
             )
-            response.raise_for_status()
         except httpx.TimeoutException as err:
+            log.debug("Encountered httpx.TimeoutException", exc_info=True)
+
+            if retries > 0:
+                return self._retry_request(
+                    options,
+                    cast_type,
+                    retries,
+                    stream=stream,
+                    stream_cls=stream_cls,
+                    response_headers=None,
+                )
+
+            log.debug("Raising timeout error")
             raise APITimeoutError(request=request) from err
-        except httpx.HTTPStatusError as err:
-            err.response.read()
-            # raise err
-            raise self._make_status_error(err.response) from None
-
         except Exception as err:
-            raise err
+            log.debug("Encountered Exception", exc_info=True)
+
+            if retries > 0:
+                return self._retry_request(
+                    options,
+                    cast_type,
+                    retries,
+                    stream=stream,
+                    stream_cls=stream_cls,
+                    response_headers=None,
+                )
+
+            log.debug("Raising connection error")
+            raise APIConnectionError(request=request) from err
+
+        log.debug(
+            'HTTP Request: %s %s "%i %s"', request.method, request.url, response.status_code, response.reason_phrase
+        )
 
-        return self._parse_response(
+        try:
+            response.raise_for_status()
+        except httpx.HTTPStatusError as err:  # thrown on 4xx and 5xx status code
+            log.debug("Encountered httpx.HTTPStatusError", exc_info=True)
+
+            if retries > 0 and self._should_retry(err.response):
+                err.response.close()
+                return self._retry_request(
+                    options,
+                    cast_type,
+                    retries,
+                    err.response.headers,
+                    stream=stream,
+                    stream_cls=stream_cls,
+                )
+
+            # If the response is streamed then we need to explicitly read the response
+            # to completion before attempting to access the response text.
+            if not err.response.is_closed:
+                err.response.read()
+
+            log.debug("Re-raising status error")
+            raise self._make_status_error(err.response) from None
+
+        # return self._parse_response(
+        #     cast_type=cast_type,
+        #     options=options,
+        #     response=response,
+        #     stream=stream,
+        #     stream_cls=stream_cls,
+        # )
+        return self._process_response(
             cast_type=cast_type,
-            request_param=params,
+            options=options,
             response=response,
-            enable_stream=enable_stream,
+            stream=stream,
+            stream_cls=stream_cls,
+        )
+
+    def _retry_request(
+        self,
+        options: FinalRequestOptions,
+        cast_type: type[ResponseT],
+        remaining_retries: int,
+        response_headers: httpx.Headers | None,
+        *,
+        stream: bool,
+        stream_cls: type[StreamResponse] | None,
+    ) -> ResponseT | StreamResponse:
+        remaining = remaining_retries - 1
+        if remaining == 1:
+            log.debug("1 retry left")
+        else:
+            log.debug("%i retries left", remaining)
+
+        timeout = self._calculate_retry_timeout(remaining, options, response_headers)
+        log.info("Retrying request to %s in %f seconds", options.url, timeout)
+
+        # In a synchronous context we are blocking the entire thread. Up to the library user to run the client in a
+        # different thread if necessary.
+        time.sleep(timeout)
+
+        return self._request(
+            options=options,
+            cast_type=cast_type,
+            remaining_retries=remaining,
+            stream=stream,
+            stream_cls=stream_cls,
+        )
+
+    def _process_response(
+        self,
+        *,
+        cast_type: type[ResponseT],
+        options: FinalRequestOptions,
+        response: httpx.Response,
+        stream: bool,
+        stream_cls: type[StreamResponse] | None,
+    ) -> ResponseT:
+        # _legacy_response with raw_response_header to paser method
+        if response.request.headers.get(RAW_RESPONSE_HEADER) == "true":
+            return cast(
+                ResponseT,
+                LegacyAPIResponse(
+                    raw=response,
+                    client=self,
+                    cast_type=cast_type,
+                    stream=stream,
+                    stream_cls=stream_cls,
+                    options=options,
+                ),
+            )
+
+        origin = get_origin(cast_type) or cast_type
+
+        if inspect.isclass(origin) and issubclass(origin, BaseAPIResponse):
+            if not issubclass(origin, APIResponse):
+                raise TypeError(f"API Response types must subclass {APIResponse}; Received {origin}")
+
+            response_cls = cast("type[BaseAPIResponse[Any]]", cast_type)
+            return cast(
+                ResponseT,
+                response_cls(
+                    raw=response,
+                    client=self,
+                    cast_type=extract_response_type(response_cls),
+                    stream=stream,
+                    stream_cls=stream_cls,
+                    options=options,
+                ),
+            )
+
+        if cast_type == httpx.Response:
+            return cast(ResponseT, response)
+
+        api_response = APIResponse(
+            raw=response,
+            client=self,
+            cast_type=cast("type[ResponseT]", cast_type),  # pyright: ignore[reportUnnecessaryCast]
+            stream=stream,
             stream_cls=stream_cls,
+            options=options,
         )
+        if bool(response.request.headers.get(RAW_RESPONSE_HEADER)):
+            return cast(ResponseT, api_response)
+
+        return api_response.parse()
+
+    def _request_api_list(
+        self,
+        model: type[object],
+        page: type[SyncPageT],
+        options: FinalRequestOptions,
+    ) -> SyncPageT:
+        def _parser(resp: SyncPageT) -> SyncPageT:
+            resp._set_private_attributes(
+                client=self,
+                model=model,
+                options=options,
+            )
+            return resp
+
+        options.post_parser = _parser
+
+        return self.request(page, options, stream=False)
 
+    @overload
     def get(
         self,
         path: str,
         *,
         cast_type: type[ResponseT],
         options: UserRequestInput = {},
-        enable_stream: bool = False,
-    ) -> ResponseT | StreamResponse:
-        opts = ClientRequestParam.construct(method="get", url=path, **options)
-        return self.request(cast_type=cast_type, params=opts, enable_stream=enable_stream)
+        stream: Literal[False] = False,
+    ) -> ResponseT: ...
 
+    @overload
+    def get(
+        self,
+        path: str,
+        *,
+        cast_type: type[ResponseT],
+        options: UserRequestInput = {},
+        stream: Literal[True],
+        stream_cls: type[StreamResponse],
+    ) -> StreamResponse: ...
+
+    @overload
+    def get(
+        self,
+        path: str,
+        *,
+        cast_type: type[ResponseT],
+        options: UserRequestInput = {},
+        stream: bool,
+        stream_cls: type[StreamResponse] | None = None,
+    ) -> ResponseT | StreamResponse: ...
+
+    def get(
+        self,
+        path: str,
+        *,
+        cast_type: type[ResponseT],
+        options: UserRequestInput = {},
+        stream: bool = False,
+        stream_cls: type[StreamResponse] | None = None,
+    ) -> ResponseT:
+        opts = FinalRequestOptions.construct(method="get", url=path, **options)
+        return cast(ResponseT, self.request(cast_type, opts, stream=stream, stream_cls=stream_cls))
+
+    @overload
     def post(
         self,
         path: str,
         *,
+        cast_type: type[ResponseT],
         body: Body | None = None,
+        options: UserRequestInput = {},
+        files: RequestFiles | None = None,
+        stream: Literal[False] = False,
+    ) -> ResponseT: ...
+
+    @overload
+    def post(
+        self,
+        path: str,
+        *,
         cast_type: type[ResponseT],
+        body: Body | None = None,
         options: UserRequestInput = {},
         files: RequestFiles | None = None,
-        enable_stream: bool = False,
+        stream: Literal[True],
+        stream_cls: type[StreamResponse],
+    ) -> StreamResponse: ...
+
+    @overload
+    def post(
+        self,
+        path: str,
+        *,
+        cast_type: type[ResponseT],
+        body: Body | None = None,
+        options: UserRequestInput = {},
+        files: RequestFiles | None = None,
+        stream: bool,
+        stream_cls: type[StreamResponse] | None = None,
+    ) -> ResponseT | StreamResponse: ...
+
+    def post(
+        self,
+        path: str,
+        *,
+        cast_type: type[ResponseT],
+        body: Body | None = None,
+        options: UserRequestInput = {},
+        files: RequestFiles | None = None,
+        stream: bool = False,
         stream_cls: type[StreamResponse[Any]] | None = None,
     ) -> ResponseT | StreamResponse:
-        opts = ClientRequestParam.construct(
-            method="post", json_data=body, files=make_httpx_files(files), url=path, **options
+        opts = FinalRequestOptions.construct(
+            method="post", url=path, json_data=body, files=to_httpx_files(files), **options
         )
 
-        return self.request(cast_type=cast_type, params=opts, enable_stream=enable_stream, stream_cls=stream_cls)
+        return cast(ResponseT, self.request(cast_type, opts, stream=stream, stream_cls=stream_cls))
 
     def patch(
         self,
         path: str,
         *,
-        body: Body | None = None,
         cast_type: type[ResponseT],
+        body: Body | None = None,
         options: UserRequestInput = {},
     ) -> ResponseT:
-        opts = ClientRequestParam.construct(method="patch", url=path, json_data=body, **options)
+        opts = FinalRequestOptions.construct(method="patch", url=path, json_data=body, **options)
 
         return self.request(
             cast_type=cast_type,
-            params=opts,
+            options=opts,
         )
 
     def put(
         self,
         path: str,
         *,
-        body: Body | None = None,
         cast_type: type[ResponseT],
+        body: Body | None = None,
         options: UserRequestInput = {},
         files: RequestFiles | None = None,
     ) -> ResponseT | StreamResponse:
-        opts = ClientRequestParam.construct(
-            method="put", url=path, json_data=body, files=make_httpx_files(files), **options
+        opts = FinalRequestOptions.construct(
+            method="put", url=path, json_data=body, files=to_httpx_files(files), **options
         )
 
         return self.request(
             cast_type=cast_type,
-            params=opts,
+            options=opts,
         )
 
     def delete(
         self,
         path: str,
         *,
-        body: Body | None = None,
         cast_type: type[ResponseT],
+        body: Body | None = None,
         options: UserRequestInput = {},
     ) -> ResponseT | StreamResponse:
-        opts = ClientRequestParam.construct(method="delete", url=path, json_data=body, **options)
+        opts = FinalRequestOptions.construct(method="delete", url=path, json_data=body, **options)
 
         return self.request(
             cast_type=cast_type,
-            params=opts,
+            options=opts,
         )
 
+    def get_api_list(
+        self,
+        path: str,
+        *,
+        model: type[object],
+        page: type[SyncPageT],
+        body: Body | None = None,
+        options: UserRequestInput = {},
+        method: str = "get",
+    ) -> SyncPageT:
+        opts = FinalRequestOptions.construct(method=method, url=path, json_data=body, **options)
+        return self._request_api_list(model, page, opts)
+
     def _make_status_error(self, response) -> APIStatusError:
         response_text = response.text.strip()
         status_code = response.status_code
@@ -343,24 +865,46 @@ class HttpClient:
         return APIStatusError(message=error_msg, response=response)
 
 
-def make_user_request_input(
-    max_retries: int | None = None,
-    timeout: float | Timeout | None | NotGiven = NOT_GIVEN,
-    extra_headers: Headers = None,
-    extra_body: Body | None = None,
+def make_request_options(
+    *,
     query: Query | None = None,
+    extra_headers: Headers | None = None,
+    extra_query: Query | None = None,
+    extra_body: Body | None = None,
+    timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+    post_parser: PostParser | NotGiven = NOT_GIVEN,
 ) -> UserRequestInput:
+    """Create a dict of type RequestOptions without keys of NotGiven values."""
     options: UserRequestInput = {}
-
     if extra_headers is not None:
         options["headers"] = extra_headers
-    if max_retries is not None:
-        options["max_retries"] = max_retries
-    if not isinstance(timeout, NotGiven):
-        options["timeout"] = timeout
-    if query is not None:
-        options["params"] = query
+
     if extra_body is not None:
         options["extra_json"] = cast(AnyMapping, extra_body)
 
+    if query is not None:
+        options["params"] = query
+
+    if extra_query is not None:
+        options["params"] = {**options.get("params", {}), **extra_query}
+
+    if not isinstance(timeout, NotGiven):
+        options["timeout"] = timeout
+
+    if is_given(post_parser):
+        # internal
+        options["post_parser"] = post_parser  # type: ignore
+
     return options
+
+
+def _merge_mappings(
+    obj1: Mapping[_T_co, Union[_T, Omit]],
+    obj2: Mapping[_T_co, Union[_T, Omit]],
+) -> dict[_T_co, _T]:
+    """Merge two mappings of the same type, removing any values that are instances of `Omit`.
+
+    In cases with duplicate keys the second mapping takes precedence.
+    """
+    merged = {**obj1, **obj2}
+    return {key: value for key, value in merged.items() if not isinstance(value, Omit)}

+ 4 - 2
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/core/_jwt_token.py

@@ -3,9 +3,11 @@ import time
 import cachetools.func
 import jwt
 
-API_TOKEN_TTL_SECONDS = 3 * 60
+# 缓存时间 3分钟
+CACHE_TTL_SECONDS = 3 * 60
 
-CACHE_TTL_SECONDS = API_TOKEN_TTL_SECONDS - 30
+# token 有效期比缓存时间 多30秒
+API_TOKEN_TTL_SECONDS = CACHE_TTL_SECONDS + 30
 
 
 @cachetools.func.ttl_cache(maxsize=10, ttl=CACHE_TTL_SECONDS)

+ 207 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/core/_legacy_binary_response.py

@@ -0,0 +1,207 @@
+from __future__ import annotations
+
+import os
+from collections.abc import AsyncIterator, Iterator
+from typing import Any
+
+import httpx
+
+
+class HttpxResponseContent:
+    @property
+    def content(self) -> bytes:
+        raise NotImplementedError("This method is not implemented for this class.")
+
+    @property
+    def text(self) -> str:
+        raise NotImplementedError("This method is not implemented for this class.")
+
+    @property
+    def encoding(self) -> str | None:
+        raise NotImplementedError("This method is not implemented for this class.")
+
+    @property
+    def charset_encoding(self) -> str | None:
+        raise NotImplementedError("This method is not implemented for this class.")
+
+    def json(self, **kwargs: Any) -> Any:
+        raise NotImplementedError("This method is not implemented for this class.")
+
+    def read(self) -> bytes:
+        raise NotImplementedError("This method is not implemented for this class.")
+
+    def iter_bytes(self, chunk_size: int | None = None) -> Iterator[bytes]:
+        raise NotImplementedError("This method is not implemented for this class.")
+
+    def iter_text(self, chunk_size: int | None = None) -> Iterator[str]:
+        raise NotImplementedError("This method is not implemented for this class.")
+
+    def iter_lines(self) -> Iterator[str]:
+        raise NotImplementedError("This method is not implemented for this class.")
+
+    def iter_raw(self, chunk_size: int | None = None) -> Iterator[bytes]:
+        raise NotImplementedError("This method is not implemented for this class.")
+
+    def write_to_file(
+        self,
+        file: str | os.PathLike[str],
+    ) -> None:
+        raise NotImplementedError("This method is not implemented for this class.")
+
+    def stream_to_file(
+        self,
+        file: str | os.PathLike[str],
+        *,
+        chunk_size: int | None = None,
+    ) -> None:
+        raise NotImplementedError("This method is not implemented for this class.")
+
+    def close(self) -> None:
+        raise NotImplementedError("This method is not implemented for this class.")
+
+    async def aread(self) -> bytes:
+        raise NotImplementedError("This method is not implemented for this class.")
+
+    async def aiter_bytes(self, chunk_size: int | None = None) -> AsyncIterator[bytes]:
+        raise NotImplementedError("This method is not implemented for this class.")
+
+    async def aiter_text(self, chunk_size: int | None = None) -> AsyncIterator[str]:
+        raise NotImplementedError("This method is not implemented for this class.")
+
+    async def aiter_lines(self) -> AsyncIterator[str]:
+        raise NotImplementedError("This method is not implemented for this class.")
+
+    async def aiter_raw(self, chunk_size: int | None = None) -> AsyncIterator[bytes]:
+        raise NotImplementedError("This method is not implemented for this class.")
+
+    async def astream_to_file(
+        self,
+        file: str | os.PathLike[str],
+        *,
+        chunk_size: int | None = None,
+    ) -> None:
+        raise NotImplementedError("This method is not implemented for this class.")
+
+    async def aclose(self) -> None:
+        raise NotImplementedError("This method is not implemented for this class.")
+
+
+class HttpxBinaryResponseContent(HttpxResponseContent):
+    response: httpx.Response
+
+    def __init__(self, response: httpx.Response) -> None:
+        self.response = response
+
+    @property
+    def content(self) -> bytes:
+        return self.response.content
+
+    @property
+    def encoding(self) -> str | None:
+        return self.response.encoding
+
+    @property
+    def charset_encoding(self) -> str | None:
+        return self.response.charset_encoding
+
+    def read(self) -> bytes:
+        return self.response.read()
+
+    def text(self) -> str:
+        raise NotImplementedError("Not implemented for binary response content")
+
+    def json(self, **kwargs: Any) -> Any:
+        raise NotImplementedError("Not implemented for binary response content")
+
+    def iter_text(self, chunk_size: int | None = None) -> Iterator[str]:
+        raise NotImplementedError("Not implemented for binary response content")
+
+    def iter_lines(self) -> Iterator[str]:
+        raise NotImplementedError("Not implemented for binary response content")
+
+    async def aiter_text(self, chunk_size: int | None = None) -> AsyncIterator[str]:
+        raise NotImplementedError("Not implemented for binary response content")
+
+    async def aiter_lines(self) -> AsyncIterator[str]:
+        raise NotImplementedError("Not implemented for binary response content")
+
+    def iter_bytes(self, chunk_size: int | None = None) -> Iterator[bytes]:
+        return self.response.iter_bytes(chunk_size)
+
+    def iter_raw(self, chunk_size: int | None = None) -> Iterator[bytes]:
+        return self.response.iter_raw(chunk_size)
+
+    def write_to_file(
+        self,
+        file: str | os.PathLike[str],
+    ) -> None:
+        """Write the output to the given file.
+
+        Accepts a filename or any path-like object, e.g. pathlib.Path
+
+        Note: if you want to stream the data to the file instead of writing
+        all at once then you should use `.with_streaming_response` when making
+        the API request, e.g. `client.with_streaming_response.foo().stream_to_file('my_filename.txt')`
+        """
+        with open(file, mode="wb") as f:
+            for data in self.response.iter_bytes():
+                f.write(data)
+
+    def stream_to_file(
+        self,
+        file: str | os.PathLike[str],
+        *,
+        chunk_size: int | None = None,
+    ) -> None:
+        with open(file, mode="wb") as f:
+            for data in self.response.iter_bytes(chunk_size):
+                f.write(data)
+
+    def close(self) -> None:
+        return self.response.close()
+
+    async def aread(self) -> bytes:
+        return await self.response.aread()
+
+    async def aiter_bytes(self, chunk_size: int | None = None) -> AsyncIterator[bytes]:
+        return self.response.aiter_bytes(chunk_size)
+
+    async def aiter_raw(self, chunk_size: int | None = None) -> AsyncIterator[bytes]:
+        return self.response.aiter_raw(chunk_size)
+
+    async def astream_to_file(
+        self,
+        file: str | os.PathLike[str],
+        *,
+        chunk_size: int | None = None,
+    ) -> None:
+        path = anyio.Path(file)
+        async with await path.open(mode="wb") as f:
+            async for data in self.response.aiter_bytes(chunk_size):
+                await f.write(data)
+
+    async def aclose(self) -> None:
+        return await self.response.aclose()
+
+
+class HttpxTextBinaryResponseContent(HttpxBinaryResponseContent):
+    response: httpx.Response
+
+    @property
+    def text(self) -> str:
+        return self.response.text
+
+    def json(self, **kwargs: Any) -> Any:
+        return self.response.json(**kwargs)
+
+    def iter_text(self, chunk_size: int | None = None) -> Iterator[str]:
+        return self.response.iter_text(chunk_size)
+
+    def iter_lines(self) -> Iterator[str]:
+        return self.response.iter_lines()
+
+    async def aiter_text(self, chunk_size: int | None = None) -> AsyncIterator[str]:
+        return self.response.aiter_text(chunk_size)
+
+    async def aiter_lines(self) -> AsyncIterator[str]:
+        return self.response.aiter_lines()

+ 341 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/core/_legacy_response.py

@@ -0,0 +1,341 @@
+from __future__ import annotations
+
+import datetime
+import functools
+import inspect
+import logging
+from collections.abc import Callable
+from typing import TYPE_CHECKING, Any, Generic, TypeVar, Union, cast, get_origin, overload
+
+import httpx
+import pydantic
+from typing_extensions import ParamSpec, override
+
+from ._base_models import BaseModel, is_basemodel
+from ._base_type import NoneType
+from ._constants import RAW_RESPONSE_HEADER
+from ._errors import APIResponseValidationError
+from ._legacy_binary_response import HttpxResponseContent, HttpxTextBinaryResponseContent
+from ._sse_client import StreamResponse, extract_stream_chunk_type, is_stream_class_type
+from ._utils import extract_type_arg, is_annotated_type, is_given
+
+if TYPE_CHECKING:
+    from ._http_client import HttpClient
+    from ._request_opt import FinalRequestOptions
+
+P = ParamSpec("P")
+R = TypeVar("R")
+_T = TypeVar("_T")
+
+log: logging.Logger = logging.getLogger(__name__)
+
+
+class LegacyAPIResponse(Generic[R]):
+    """This is a legacy class as it will be replaced by `APIResponse`
+    and `AsyncAPIResponse` in the `_response.py` file in the next major
+    release.
+
+    For the sync client this will mostly be the same with the exception
+    of `content` & `text` will be methods instead of properties. In the
+    async client, all methods will be async.
+
+    A migration script will be provided & the migration in general should
+    be smooth.
+    """
+
+    _cast_type: type[R]
+    _client: HttpClient
+    _parsed_by_type: dict[type[Any], Any]
+    _stream: bool
+    _stream_cls: type[StreamResponse[Any]] | None
+    _options: FinalRequestOptions
+
+    http_response: httpx.Response
+
+    def __init__(
+        self,
+        *,
+        raw: httpx.Response,
+        cast_type: type[R],
+        client: HttpClient,
+        stream: bool,
+        stream_cls: type[StreamResponse[Any]] | None,
+        options: FinalRequestOptions,
+    ) -> None:
+        self._cast_type = cast_type
+        self._client = client
+        self._parsed_by_type = {}
+        self._stream = stream
+        self._stream_cls = stream_cls
+        self._options = options
+        self.http_response = raw
+
+    @property
+    def request_id(self) -> str | None:
+        return self.http_response.headers.get("x-request-id")  # type: ignore[no-any-return]
+
+    @overload
+    def parse(self, *, to: type[_T]) -> _T: ...
+
+    @overload
+    def parse(self) -> R: ...
+
+    def parse(self, *, to: type[_T] | None = None) -> R | _T:
+        """Returns the rich python representation of this response's data.
+
+        NOTE: For the async client: this will become a coroutine in the next major version.
+
+        For lower-level control, see `.read()`, `.json()`, `.iter_bytes()`.
+
+        You can customise the type that the response is parsed into through
+        the `to` argument, e.g.
+
+        ```py
+        from zhipuai import BaseModel
+
+
+        class MyModel(BaseModel):
+            foo: str
+
+
+        obj = response.parse(to=MyModel)
+        print(obj.foo)
+        ```
+
+        We support parsing:
+          - `BaseModel`
+          - `dict`
+          - `list`
+          - `Union`
+          - `str`
+          - `int`
+          - `float`
+          - `httpx.Response`
+        """
+        cache_key = to if to is not None else self._cast_type
+        cached = self._parsed_by_type.get(cache_key)
+        if cached is not None:
+            return cached  # type: ignore[no-any-return]
+
+        parsed = self._parse(to=to)
+        if is_given(self._options.post_parser):
+            parsed = self._options.post_parser(parsed)
+
+        self._parsed_by_type[cache_key] = parsed
+        return parsed
+
+    @property
+    def headers(self) -> httpx.Headers:
+        return self.http_response.headers
+
+    @property
+    def http_request(self) -> httpx.Request:
+        return self.http_response.request
+
+    @property
+    def status_code(self) -> int:
+        return self.http_response.status_code
+
+    @property
+    def url(self) -> httpx.URL:
+        return self.http_response.url
+
+    @property
+    def method(self) -> str:
+        return self.http_request.method
+
+    @property
+    def content(self) -> bytes:
+        """Return the binary response content.
+
+        NOTE: this will be removed in favour of `.read()` in the
+        next major version.
+        """
+        return self.http_response.content
+
+    @property
+    def text(self) -> str:
+        """Return the decoded response content.
+
+        NOTE: this will be turned into a method in the next major version.
+        """
+        return self.http_response.text
+
+    @property
+    def http_version(self) -> str:
+        return self.http_response.http_version
+
+    @property
+    def is_closed(self) -> bool:
+        return self.http_response.is_closed
+
+    @property
+    def elapsed(self) -> datetime.timedelta:
+        """The time taken for the complete request/response cycle to complete."""
+        return self.http_response.elapsed
+
+    def _parse(self, *, to: type[_T] | None = None) -> R | _T:
+        # unwrap `Annotated[T, ...]` -> `T`
+        if to and is_annotated_type(to):
+            to = extract_type_arg(to, 0)
+
+        if self._stream:
+            if to:
+                if not is_stream_class_type(to):
+                    raise TypeError(f"Expected custom parse type to be a subclass of {StreamResponse}")
+
+                return cast(
+                    _T,
+                    to(
+                        cast_type=extract_stream_chunk_type(
+                            to,
+                            failure_message="Expected custom stream type to be passed with a type argument, e.g. StreamResponse[ChunkType]",  # noqa: E501
+                        ),
+                        response=self.http_response,
+                        client=cast(Any, self._client),
+                    ),
+                )
+
+            if self._stream_cls:
+                return cast(
+                    R,
+                    self._stream_cls(
+                        cast_type=extract_stream_chunk_type(self._stream_cls),
+                        response=self.http_response,
+                        client=cast(Any, self._client),
+                    ),
+                )
+
+            stream_cls = cast("type[StreamResponse[Any]] | None", self._client._default_stream_cls)
+            if stream_cls is None:
+                raise MissingStreamClassError()
+
+            return cast(
+                R,
+                stream_cls(
+                    cast_type=self._cast_type,
+                    response=self.http_response,
+                    client=cast(Any, self._client),
+                ),
+            )
+
+        cast_type = to if to is not None else self._cast_type
+
+        # unwrap `Annotated[T, ...]` -> `T`
+        if is_annotated_type(cast_type):
+            cast_type = extract_type_arg(cast_type, 0)
+
+        if cast_type is NoneType:
+            return cast(R, None)
+
+        response = self.http_response
+        if cast_type == str:
+            return cast(R, response.text)
+
+        if cast_type == int:
+            return cast(R, int(response.text))
+
+        if cast_type == float:
+            return cast(R, float(response.text))
+
+        origin = get_origin(cast_type) or cast_type
+
+        if inspect.isclass(origin) and issubclass(origin, HttpxResponseContent):
+            # in the response, e.g. mime file
+            *_, filename = response.headers.get("content-disposition", "").split("filename=")
+            # 判断文件类型是jsonl类型的使用HttpxTextBinaryResponseContent
+            if filename and filename.endswith(".jsonl") or filename and filename.endswith(".xlsx"):
+                return cast(R, HttpxTextBinaryResponseContent(response))
+            else:
+                return cast(R, cast_type(response))  # type: ignore
+
+        if origin == LegacyAPIResponse:
+            raise RuntimeError("Unexpected state - cast_type is `APIResponse`")
+
+        if inspect.isclass(origin) and issubclass(origin, httpx.Response):
+            # Because of the invariance of our ResponseT TypeVar, users can subclass httpx.Response
+            # and pass that class to our request functions. We cannot change the variance to be either
+            # covariant or contravariant as that makes our usage of ResponseT illegal. We could construct
+            # the response class ourselves but that is something that should be supported directly in httpx
+            # as it would be easy to incorrectly construct the Response object due to the multitude of arguments.
+            if cast_type != httpx.Response:
+                raise ValueError("Subclasses of httpx.Response cannot be passed to `cast_type`")
+            return cast(R, response)
+
+        if inspect.isclass(origin) and not issubclass(origin, BaseModel) and issubclass(origin, pydantic.BaseModel):
+            raise TypeError("Pydantic models must subclass our base model type, e.g. `from openai import BaseModel`")
+
+        if (
+            cast_type is not object
+            and origin is not list
+            and origin is not dict
+            and origin is not Union
+            and not issubclass(origin, BaseModel)
+        ):
+            raise RuntimeError(
+                f"Unsupported type, expected {cast_type} to be a subclass of {BaseModel}, {dict}, {list}, {Union}, {NoneType}, {str} or {httpx.Response}."  # noqa: E501
+            )
+
+        # split is required to handle cases where additional information is included
+        # in the response, e.g. application/json; charset=utf-8
+        content_type, *_ = response.headers.get("content-type", "*").split(";")
+        if content_type != "application/json":
+            if is_basemodel(cast_type):
+                try:
+                    data = response.json()
+                except Exception as exc:
+                    log.debug("Could not read JSON from response data due to %s - %s", type(exc), exc)
+                else:
+                    return self._client._process_response_data(
+                        data=data,
+                        cast_type=cast_type,  # type: ignore
+                        response=response,
+                    )
+
+            if self._client._strict_response_validation:
+                raise APIResponseValidationError(
+                    response=response,
+                    message=f"Expected Content-Type response header to be `application/json` but received `{content_type}` instead.",  # noqa: E501
+                    json_data=response.text,
+                )
+
+            # If the API responds with content that isn't JSON then we just return
+            # the (decoded) text without performing any parsing so that you can still
+            # handle the response however you need to.
+            return response.text  # type: ignore
+
+        data = response.json()
+
+        return self._client._process_response_data(
+            data=data,
+            cast_type=cast_type,  # type: ignore
+            response=response,
+        )
+
+    @override
+    def __repr__(self) -> str:
+        return f"<APIResponse [{self.status_code} {self.http_response.reason_phrase}] type={self._cast_type}>"
+
+
+class MissingStreamClassError(TypeError):
+    def __init__(self) -> None:
+        super().__init__(
+            "The `stream` argument was set to `True` but the `stream_cls` argument was not given. See `openai._streaming` for reference",  # noqa: E501
+        )
+
+
+def to_raw_response_wrapper(func: Callable[P, R]) -> Callable[P, LegacyAPIResponse[R]]:
+    """Higher order function that takes one of our bound API methods and wraps it
+    to support returning the raw `APIResponse` object directly.
+    """
+
+    @functools.wraps(func)
+    def wrapped(*args: P.args, **kwargs: P.kwargs) -> LegacyAPIResponse[R]:
+        extra_headers: dict[str, str] = {**(cast(Any, kwargs.get("extra_headers")) or {})}
+        extra_headers[RAW_RESPONSE_HEADER] = "true"
+
+        kwargs["extra_headers"] = extra_headers
+
+        return cast(LegacyAPIResponse[R], func(*args, **kwargs))
+
+    return wrapped

+ 69 - 20
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/core/_request_opt.py

@@ -1,48 +1,97 @@
 from __future__ import annotations
 
-from typing import Any, ClassVar, Union
+from collections.abc import Callable
+from typing import TYPE_CHECKING, Any, ClassVar, Union, cast
 
+import pydantic.generics
 from httpx import Timeout
-from pydantic import ConfigDict
-from typing_extensions import TypedDict, Unpack
+from typing_extensions import Required, TypedDict, Unpack, final
 
-from ._base_type import Body, Headers, HttpxRequestFiles, NotGiven, Query
-from ._utils import remove_notgiven_indict
+from ._base_compat import PYDANTIC_V2, ConfigDict
+from ._base_type import AnyMapping, Body, Headers, HttpxRequestFiles, NotGiven, Query
+from ._constants import RAW_RESPONSE_HEADER
+from ._utils import is_given, strip_not_given
 
 
 class UserRequestInput(TypedDict, total=False):
+    headers: Headers
     max_retries: int
     timeout: float | Timeout | None
+    params: Query
+    extra_json: AnyMapping
+
+
+class FinalRequestOptionsInput(TypedDict, total=False):
+    method: Required[str]
+    url: Required[str]
+    params: Query
     headers: Headers
-    params: Query | None
+    max_retries: int
+    timeout: float | Timeout | None
+    files: HttpxRequestFiles | None
+    json_data: Body
+    extra_json: AnyMapping
 
 
-class ClientRequestParam:
+@final
+class FinalRequestOptions(pydantic.BaseModel):
     method: str
     url: str
-    max_retries: Union[int, NotGiven] = NotGiven()
-    timeout: Union[float, NotGiven] = NotGiven()
+    params: Query = {}
     headers: Union[Headers, NotGiven] = NotGiven()
-    json_data: Union[Body, None] = None
+    max_retries: Union[int, NotGiven] = NotGiven()
+    timeout: Union[float, Timeout, None, NotGiven] = NotGiven()
     files: Union[HttpxRequestFiles, None] = None
-    params: Query = {}
-    model_config: ClassVar[ConfigDict] = ConfigDict(arbitrary_types_allowed=True)
+    idempotency_key: Union[str, None] = None
+    post_parser: Union[Callable[[Any], Any], NotGiven] = NotGiven()
+
+    # It should be noted that we cannot use `json` here as that would override
+    # a BaseModel method in an incompatible fashion.
+    json_data: Union[Body, None] = None
+    extra_json: Union[AnyMapping, None] = None
+
+    if PYDANTIC_V2:
+        model_config: ClassVar[ConfigDict] = ConfigDict(arbitrary_types_allowed=True)
+    else:
 
-    def get_max_retries(self, max_retries) -> int:
+        class Config(pydantic.BaseConfig):  # pyright: ignore[reportDeprecated]
+            arbitrary_types_allowed: bool = True
+
+    def get_max_retries(self, max_retries: int) -> int:
         if isinstance(self.max_retries, NotGiven):
             return max_retries
         return self.max_retries
 
+    def _strip_raw_response_header(self) -> None:
+        if not is_given(self.headers):
+            return
+
+        if self.headers.get(RAW_RESPONSE_HEADER):
+            self.headers = {**self.headers}
+            self.headers.pop(RAW_RESPONSE_HEADER)
+
+    # override the `construct` method so that we can run custom transformations.
+    # this is necessary as we don't want to do any actual runtime type checking
+    # (which means we can't use validators) but we do want to ensure that `NotGiven`
+    # values are not present
+    #
+    # type ignore required because we're adding explicit types to `**values`
     @classmethod
     def construct(  # type: ignore
         cls,
         _fields_set: set[str] | None = None,
         **values: Unpack[UserRequestInput],
-    ) -> ClientRequestParam:
-        kwargs: dict[str, Any] = {key: remove_notgiven_indict(value) for key, value in values.items()}
-        client = cls()
-        client.__dict__.update(kwargs)
-
-        return client
+    ) -> FinalRequestOptions:
+        kwargs: dict[str, Any] = {
+            # we unconditionally call `strip_not_given` on any value
+            # as it will just ignore any non-mapping types
+            key: strip_not_given(value)
+            for key, value in values.items()
+        }
+        if PYDANTIC_V2:
+            return super().model_construct(_fields_set, **kwargs)
+        return cast(FinalRequestOptions, super().construct(_fields_set, **kwargs))  # pyright: ignore[reportDeprecated]
 
-    model_construct = construct
+    if not TYPE_CHECKING:
+        # type checkers incorrectly complain about this assignment
+        model_construct = construct

+ 319 - 42
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/core/_response.py

@@ -1,87 +1,193 @@
 from __future__ import annotations
 
 import datetime
-from typing import TYPE_CHECKING, Any, Generic, TypeVar, cast, get_args, get_origin
+import inspect
+import logging
+from collections.abc import Iterator
+from typing import TYPE_CHECKING, Any, Generic, TypeVar, Union, cast, get_origin, overload
 
 import httpx
 import pydantic
-from typing_extensions import ParamSpec
+from typing_extensions import ParamSpec, override
 
+from ._base_models import BaseModel, is_basemodel
 from ._base_type import NoneType
-from ._sse_client import StreamResponse
+from ._errors import APIResponseValidationError, ZhipuAIError
+from ._sse_client import StreamResponse, extract_stream_chunk_type, is_stream_class_type
+from ._utils import extract_type_arg, extract_type_var_from_base, is_annotated_type, is_given
 
 if TYPE_CHECKING:
     from ._http_client import HttpClient
+    from ._request_opt import FinalRequestOptions
 
 P = ParamSpec("P")
 R = TypeVar("R")
+_T = TypeVar("_T")
+_APIResponseT = TypeVar("_APIResponseT", bound="APIResponse[Any]")
+log: logging.Logger = logging.getLogger(__name__)
 
 
-class HttpResponse(Generic[R]):
+class BaseAPIResponse(Generic[R]):
     _cast_type: type[R]
     _client: HttpClient
-    _parsed: R | None
-    _enable_stream: bool
+    _parsed_by_type: dict[type[Any], Any]
+    _is_sse_stream: bool
     _stream_cls: type[StreamResponse[Any]]
+    _options: FinalRequestOptions
     http_response: httpx.Response
 
     def __init__(
         self,
         *,
-        raw_response: httpx.Response,
+        raw: httpx.Response,
         cast_type: type[R],
         client: HttpClient,
-        enable_stream: bool = False,
+        stream: bool,
         stream_cls: type[StreamResponse[Any]] | None = None,
+        options: FinalRequestOptions,
     ) -> None:
         self._cast_type = cast_type
         self._client = client
-        self._parsed = None
+        self._parsed_by_type = {}
+        self._is_sse_stream = stream
         self._stream_cls = stream_cls
-        self._enable_stream = enable_stream
-        self.http_response = raw_response
+        self._options = options
+        self.http_response = raw
 
-    def parse(self) -> R:
-        self._parsed = self._parse()
-        return self._parsed
+    def _parse(self, *, to: type[_T] | None = None) -> R | _T:
+        # unwrap `Annotated[T, ...]` -> `T`
+        if to and is_annotated_type(to):
+            to = extract_type_arg(to, 0)
 
-    def _parse(self) -> R:
-        if self._enable_stream:
-            self._parsed = cast(
+        if self._is_sse_stream:
+            if to:
+                if not is_stream_class_type(to):
+                    raise TypeError(f"Expected custom parse type to be a subclass of {StreamResponse}")
+
+                return cast(
+                    _T,
+                    to(
+                        cast_type=extract_stream_chunk_type(
+                            to,
+                            failure_message="Expected custom stream type to be passed with a type argument, e.g. StreamResponse[ChunkType]",  # noqa: E501
+                        ),
+                        response=self.http_response,
+                        client=cast(Any, self._client),
+                    ),
+                )
+
+            if self._stream_cls:
+                return cast(
+                    R,
+                    self._stream_cls(
+                        cast_type=extract_stream_chunk_type(self._stream_cls),
+                        response=self.http_response,
+                        client=cast(Any, self._client),
+                    ),
+                )
+
+            stream_cls = cast("type[Stream[Any]] | None", self._client._default_stream_cls)
+            if stream_cls is None:
+                raise MissingStreamClassError()
+
+            return cast(
                 R,
-                self._stream_cls(
-                    cast_type=cast(type, get_args(self._stream_cls)[0]),
+                stream_cls(
+                    cast_type=self._cast_type,
                     response=self.http_response,
-                    client=self._client,
+                    client=cast(Any, self._client),
                 ),
             )
-            return self._parsed
-        cast_type = self._cast_type
+
+        cast_type = to if to is not None else self._cast_type
+
+        # unwrap `Annotated[T, ...]` -> `T`
+        if is_annotated_type(cast_type):
+            cast_type = extract_type_arg(cast_type, 0)
+
         if cast_type is NoneType:
             return cast(R, None)
-        http_response = self.http_response
+
+        response = self.http_response
         if cast_type == str:
-            return cast(R, http_response.text)
+            return cast(R, response.text)
+
+        if cast_type == bytes:
+            return cast(R, response.content)
+
+        if cast_type == int:
+            return cast(R, int(response.text))
+
+        if cast_type == float:
+            return cast(R, float(response.text))
 
-        content_type, *_ = http_response.headers.get("content-type", "application/json").split(";")
         origin = get_origin(cast_type) or cast_type
+
+        # handle the legacy binary response case
+        if inspect.isclass(cast_type) and cast_type.__name__ == "HttpxBinaryResponseContent":
+            return cast(R, cast_type(response))  # type: ignore
+
+        if origin == APIResponse:
+            raise RuntimeError("Unexpected state - cast_type is `APIResponse`")
+
+        if inspect.isclass(origin) and issubclass(origin, httpx.Response):
+            # Because of the invariance of our ResponseT TypeVar, users can subclass httpx.Response
+            # and pass that class to our request functions. We cannot change the variance to be either
+            # covariant or contravariant as that makes our usage of ResponseT illegal. We could construct
+            # the response class ourselves but that is something that should be supported directly in httpx
+            # as it would be easy to incorrectly construct the Response object due to the multitude of arguments.
+            if cast_type != httpx.Response:
+                raise ValueError("Subclasses of httpx.Response cannot be passed to `cast_type`")
+            return cast(R, response)
+
+        if inspect.isclass(origin) and not issubclass(origin, BaseModel) and issubclass(origin, pydantic.BaseModel):
+            raise TypeError("Pydantic models must subclass our base model type, e.g. `from openai import BaseModel`")
+
+        if (
+            cast_type is not object
+            and origin is not list
+            and origin is not dict
+            and origin is not Union
+            and not issubclass(origin, BaseModel)
+        ):
+            raise RuntimeError(
+                f"Unsupported type, expected {cast_type} to be a subclass of {BaseModel}, {dict}, {list}, {Union}, {NoneType}, {str} or {httpx.Response}."  # noqa: E501
+            )
+
+        # split is required to handle cases where additional information is included
+        # in the response, e.g. application/json; charset=utf-8
+        content_type, *_ = response.headers.get("content-type", "*").split(";")
         if content_type != "application/json":
-            if issubclass(origin, pydantic.BaseModel):
-                data = http_response.json()
-                return self._client._process_response_data(
-                    data=data,
-                    cast_type=cast_type,  # type: ignore
-                    response=http_response,
+            if is_basemodel(cast_type):
+                try:
+                    data = response.json()
+                except Exception as exc:
+                    log.debug("Could not read JSON from response data due to %s - %s", type(exc), exc)
+                else:
+                    return self._client._process_response_data(
+                        data=data,
+                        cast_type=cast_type,  # type: ignore
+                        response=response,
+                    )
+
+            if self._client._strict_response_validation:
+                raise APIResponseValidationError(
+                    response=response,
+                    message=f"Expected Content-Type response header to be `application/json` but received `{content_type}` instead.",  # noqa: E501
+                    json_data=response.text,
                 )
 
-            return http_response.text
+            # If the API responds with content that isn't JSON then we just return
+            # the (decoded) text without performing any parsing so that you can still
+            # handle the response however you need to.
+            return response.text  # type: ignore
 
-        data = http_response.json()
+        data = response.json()
 
         return self._client._process_response_data(
             data=data,
             cast_type=cast_type,  # type: ignore
-            response=http_response,
+            response=response,
         )
 
     @property
@@ -90,6 +196,7 @@ class HttpResponse(Generic[R]):
 
     @property
     def http_request(self) -> httpx.Request:
+        """Returns the httpx Request instance associated with the current response."""
         return self.http_response.request
 
     @property
@@ -98,24 +205,194 @@ class HttpResponse(Generic[R]):
 
     @property
     def url(self) -> httpx.URL:
+        """Returns the URL for which the request was made."""
         return self.http_response.url
 
     @property
     def method(self) -> str:
         return self.http_request.method
 
-    @property
-    def content(self) -> bytes:
-        return self.http_response.content
-
-    @property
-    def text(self) -> str:
-        return self.http_response.text
-
     @property
     def http_version(self) -> str:
         return self.http_response.http_version
 
     @property
     def elapsed(self) -> datetime.timedelta:
+        """The time taken for the complete request/response cycle to complete."""
         return self.http_response.elapsed
+
+    @property
+    def is_closed(self) -> bool:
+        """Whether or not the response body has been closed.
+
+        If this is False then there is response data that has not been read yet.
+        You must either fully consume the response body or call `.close()`
+        before discarding the response to prevent resource leaks.
+        """
+        return self.http_response.is_closed
+
+    @override
+    def __repr__(self) -> str:
+        return f"<{self.__class__.__name__} [{self.status_code} {self.http_response.reason_phrase}] type={self._cast_type}>"  # noqa: E501
+
+
+class APIResponse(BaseAPIResponse[R]):
+    @property
+    def request_id(self) -> str | None:
+        return self.http_response.headers.get("x-request-id")  # type: ignore[no-any-return]
+
+    @overload
+    def parse(self, *, to: type[_T]) -> _T: ...
+
+    @overload
+    def parse(self) -> R: ...
+
+    def parse(self, *, to: type[_T] | None = None) -> R | _T:
+        """Returns the rich python representation of this response's data.
+
+        For lower-level control, see `.read()`, `.json()`, `.iter_bytes()`.
+
+        You can customise the type that the response is parsed into through
+        the `to` argument, e.g.
+
+        ```py
+        from openai import BaseModel
+
+
+        class MyModel(BaseModel):
+            foo: str
+
+
+        obj = response.parse(to=MyModel)
+        print(obj.foo)
+        ```
+
+        We support parsing:
+          - `BaseModel`
+          - `dict`
+          - `list`
+          - `Union`
+          - `str`
+          - `int`
+          - `float`
+          - `httpx.Response`
+        """
+        cache_key = to if to is not None else self._cast_type
+        cached = self._parsed_by_type.get(cache_key)
+        if cached is not None:
+            return cached  # type: ignore[no-any-return]
+
+        if not self._is_sse_stream:
+            self.read()
+
+        parsed = self._parse(to=to)
+        if is_given(self._options.post_parser):
+            parsed = self._options.post_parser(parsed)
+
+        self._parsed_by_type[cache_key] = parsed
+        return parsed
+
+    def read(self) -> bytes:
+        """Read and return the binary response content."""
+        try:
+            return self.http_response.read()
+        except httpx.StreamConsumed as exc:
+            # The default error raised by httpx isn't very
+            # helpful in our case so we re-raise it with
+            # a different error message.
+            raise StreamAlreadyConsumed() from exc
+
+    def text(self) -> str:
+        """Read and decode the response content into a string."""
+        self.read()
+        return self.http_response.text
+
+    def json(self) -> object:
+        """Read and decode the JSON response content."""
+        self.read()
+        return self.http_response.json()
+
+    def close(self) -> None:
+        """Close the response and release the connection.
+
+        Automatically called if the response body is read to completion.
+        """
+        self.http_response.close()
+
+    def iter_bytes(self, chunk_size: int | None = None) -> Iterator[bytes]:
+        """
+        A byte-iterator over the decoded response content.
+
+        This automatically handles gzip, deflate and brotli encoded responses.
+        """
+        yield from self.http_response.iter_bytes(chunk_size)
+
+    def iter_text(self, chunk_size: int | None = None) -> Iterator[str]:
+        """A str-iterator over the decoded response content
+        that handles both gzip, deflate, etc but also detects the content's
+        string encoding.
+        """
+        yield from self.http_response.iter_text(chunk_size)
+
+    def iter_lines(self) -> Iterator[str]:
+        """Like `iter_text()` but will only yield chunks for each line"""
+        yield from self.http_response.iter_lines()
+
+
+class MissingStreamClassError(TypeError):
+    def __init__(self) -> None:
+        super().__init__(
+            "The `stream` argument was set to `True` but the `stream_cls` argument was not given. See `openai._streaming` for reference",  # noqa: E501
+        )
+
+
+class StreamAlreadyConsumed(ZhipuAIError):  # noqa: N818
+    """
+    Attempted to read or stream content, but the content has already
+    been streamed.
+
+    This can happen if you use a method like `.iter_lines()` and then attempt
+    to read th entire response body afterwards, e.g.
+
+    ```py
+    response = await client.post(...)
+    async for line in response.iter_lines():
+        ...  # do something with `line`
+
+    content = await response.read()
+    # ^ error
+    ```
+
+    If you want this behaviour you'll need to either manually accumulate the response
+    content or call `await response.read()` before iterating over the stream.
+    """
+
+    def __init__(self) -> None:
+        message = (
+            "Attempted to read or stream some content, but the content has "
+            "already been streamed. "
+            "This could be due to attempting to stream the response "
+            "content more than once."
+            "\n\n"
+            "You can fix this by manually accumulating the response content while streaming "
+            "or by calling `.read()` before starting to stream."
+        )
+        super().__init__(message)
+
+
+def extract_response_type(typ: type[BaseAPIResponse[Any]]) -> type:
+    """Given a type like `APIResponse[T]`, returns the generic type variable `T`.
+
+    This also handles the case where a concrete subclass is given, e.g.
+    ```py
+    class MyResponse(APIResponse[bytes]):
+        ...
+
+    extract_response_type(MyResponse) -> bytes
+    ```
+    """
+    return extract_type_var_from_base(
+        typ,
+        generic_bases=cast("tuple[type, ...]", (BaseAPIResponse, APIResponse)),
+        index=0,
+    )

+ 67 - 1
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/core/_sse_client.py

@@ -1,13 +1,16 @@
 from __future__ import annotations
 
+import inspect
 import json
 from collections.abc import Iterator, Mapping
-from typing import TYPE_CHECKING, Generic
+from typing import TYPE_CHECKING, Generic, TypeGuard, cast
 
 import httpx
 
+from . import get_origin
 from ._base_type import ResponseT
 from ._errors import APIResponseError
+from ._utils import extract_type_var_from_base, is_mapping
 
 _FIELD_SEPARATOR = ":"
 
@@ -53,8 +56,41 @@ class StreamResponse(Generic[ResponseT]):
                         request=self.response.request,
                         json_data=data["error"],
                     )
+            if sse.event is None:
+                data = sse.json_data()
+                if is_mapping(data) and data.get("error"):
+                    message = None
+                    error = data.get("error")
+                    if is_mapping(error):
+                        message = error.get("message")
+                    if not message or not isinstance(message, str):
+                        message = "An error occurred during streaming"
 
+                    raise APIResponseError(
+                        message=message,
+                        request=self.response.request,
+                        json_data=data["error"],
+                    )
                 yield self._data_process_func(data=data, cast_type=self._cast_type, response=self.response)
+
+            else:
+                data = sse.json_data()
+
+                if sse.event == "error" and is_mapping(data) and data.get("error"):
+                    message = None
+                    error = data.get("error")
+                    if is_mapping(error):
+                        message = error.get("message")
+                    if not message or not isinstance(message, str):
+                        message = "An error occurred during streaming"
+
+                    raise APIResponseError(
+                        message=message,
+                        request=self.response.request,
+                        json_data=data["error"],
+                    )
+                yield self._data_process_func(data=data, cast_type=self._cast_type, response=self.response)
+
         for sse in iterator:
             pass
 
@@ -138,3 +174,33 @@ class SSELineParser:
             except (TypeError, ValueError):
                 pass
         return
+
+
+def is_stream_class_type(typ: type) -> TypeGuard[type[StreamResponse[object]]]:
+    """TypeGuard for determining whether or not the given type is a subclass of `Stream` / `AsyncStream`"""
+    origin = get_origin(typ) or typ
+    return inspect.isclass(origin) and issubclass(origin, StreamResponse)
+
+
+def extract_stream_chunk_type(
+    stream_cls: type,
+    *,
+    failure_message: str | None = None,
+) -> type:
+    """Given a type like `StreamResponse[T]`, returns the generic type variable `T`.
+
+    This also handles the case where a concrete subclass is given, e.g.
+    ```py
+    class MyStream(StreamResponse[bytes]):
+        ...
+
+    extract_stream_chunk_type(MyStream) -> bytes
+    ```
+    """
+
+    return extract_type_var_from_base(
+        stream_cls,
+        index=0,
+        generic_bases=cast("tuple[type, ...]", (StreamResponse,)),
+        failure_message=failure_message,
+    )

+ 0 - 19
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/core/_utils.py

@@ -1,19 +0,0 @@
-from __future__ import annotations
-
-from collections.abc import Iterable, Mapping
-from typing import TypeVar
-
-from ._base_type import NotGiven
-
-
-def remove_notgiven_indict(obj):
-    if obj is None or (not isinstance(obj, Mapping)):
-        return obj
-    return {key: value for key, value in obj.items() if not isinstance(value, NotGiven)}
-
-
-_T = TypeVar("_T")
-
-
-def flatten(t: Iterable[Iterable[_T]]) -> list[_T]:
-    return [item for sublist in t for item in sublist]

+ 52 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/core/_utils/__init__.py

@@ -0,0 +1,52 @@
+from ._utils import (  # noqa: I001
+    remove_notgiven_indict as remove_notgiven_indict,  # noqa: PLC0414
+    flatten as flatten,  # noqa: PLC0414
+    is_dict as is_dict,  # noqa: PLC0414
+    is_list as is_list,  # noqa: PLC0414
+    is_given as is_given,  # noqa: PLC0414
+    is_tuple as is_tuple,  # noqa: PLC0414
+    is_mapping as is_mapping,  # noqa: PLC0414
+    is_tuple_t as is_tuple_t,  # noqa: PLC0414
+    parse_date as parse_date,  # noqa: PLC0414
+    is_iterable as is_iterable,  # noqa: PLC0414
+    is_sequence as is_sequence,  # noqa: PLC0414
+    coerce_float as coerce_float,  # noqa: PLC0414
+    is_mapping_t as is_mapping_t,  # noqa: PLC0414
+    removeprefix as removeprefix,  # noqa: PLC0414
+    removesuffix as removesuffix,  # noqa: PLC0414
+    extract_files as extract_files,  # noqa: PLC0414
+    is_sequence_t as is_sequence_t,  # noqa: PLC0414
+    required_args as required_args,  # noqa: PLC0414
+    coerce_boolean as coerce_boolean,  # noqa: PLC0414
+    coerce_integer as coerce_integer,  # noqa: PLC0414
+    file_from_path as file_from_path,  # noqa: PLC0414
+    parse_datetime as parse_datetime,  # noqa: PLC0414
+    strip_not_given as strip_not_given,  # noqa: PLC0414
+    deepcopy_minimal as deepcopy_minimal,  # noqa: PLC0414
+    get_async_library as get_async_library,  # noqa: PLC0414
+    maybe_coerce_float as maybe_coerce_float,  # noqa: PLC0414
+    get_required_header as get_required_header,  # noqa: PLC0414
+    maybe_coerce_boolean as maybe_coerce_boolean,  # noqa: PLC0414
+    maybe_coerce_integer as maybe_coerce_integer,  # noqa: PLC0414
+    drop_prefix_image_data as drop_prefix_image_data,  # noqa: PLC0414
+)
+
+
+from ._typing import (
+    is_list_type as is_list_type,  # noqa: PLC0414
+    is_union_type as is_union_type,  # noqa: PLC0414
+    extract_type_arg as extract_type_arg,  # noqa: PLC0414
+    is_iterable_type as is_iterable_type,  # noqa: PLC0414
+    is_required_type as is_required_type,  # noqa: PLC0414
+    is_annotated_type as is_annotated_type,  # noqa: PLC0414
+    strip_annotated_type as strip_annotated_type,  # noqa: PLC0414
+    extract_type_var_from_base as extract_type_var_from_base,  # noqa: PLC0414
+)
+
+from ._transform import (
+    PropertyInfo as PropertyInfo,  # noqa: PLC0414
+    transform as transform,  # noqa: PLC0414
+    async_transform as async_transform,  # noqa: PLC0414
+    maybe_transform as maybe_transform,  # noqa: PLC0414
+    async_maybe_transform as async_maybe_transform,  # noqa: PLC0414
+)

+ 383 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/core/_utils/_transform.py

@@ -0,0 +1,383 @@
+from __future__ import annotations
+
+import base64
+import io
+import pathlib
+from collections.abc import Mapping
+from datetime import date, datetime
+from typing import Any, Literal, TypeVar, cast, get_args, get_type_hints
+
+import anyio
+import pydantic
+from typing_extensions import override
+
+from .._base_compat import is_typeddict, model_dump
+from .._files import is_base64_file_input
+from ._typing import (
+    extract_type_arg,
+    is_annotated_type,
+    is_iterable_type,
+    is_list_type,
+    is_required_type,
+    is_union_type,
+    strip_annotated_type,
+)
+from ._utils import (
+    is_iterable,
+    is_list,
+    is_mapping,
+)
+
+_T = TypeVar("_T")
+
+
+# TODO: support for drilling globals() and locals()
+# TODO: ensure works correctly with forward references in all cases
+
+
+PropertyFormat = Literal["iso8601", "base64", "custom"]
+
+
+class PropertyInfo:
+    """Metadata class to be used in Annotated types to provide information about a given type.
+
+    For example:
+
+    class MyParams(TypedDict):
+        account_holder_name: Annotated[str, PropertyInfo(alias='accountHolderName')]
+
+    This means that {'account_holder_name': 'Robert'} will be transformed to {'accountHolderName': 'Robert'} before being sent to the API.
+    """  # noqa: E501
+
+    alias: str | None
+    format: PropertyFormat | None
+    format_template: str | None
+    discriminator: str | None
+
+    def __init__(
+        self,
+        *,
+        alias: str | None = None,
+        format: PropertyFormat | None = None,
+        format_template: str | None = None,
+        discriminator: str | None = None,
+    ) -> None:
+        self.alias = alias
+        self.format = format
+        self.format_template = format_template
+        self.discriminator = discriminator
+
+    @override
+    def __repr__(self) -> str:
+        return f"{self.__class__.__name__}(alias='{self.alias}', format={self.format}, format_template='{self.format_template}', discriminator='{self.discriminator}')"  # noqa: E501
+
+
+def maybe_transform(
+    data: object,
+    expected_type: object,
+) -> Any | None:
+    """Wrapper over `transform()` that allows `None` to be passed.
+
+    See `transform()` for more details.
+    """
+    if data is None:
+        return None
+    return transform(data, expected_type)
+
+
+# Wrapper over _transform_recursive providing fake types
+def transform(
+    data: _T,
+    expected_type: object,
+) -> _T:
+    """Transform dictionaries based off of type information from the given type, for example:
+
+    ```py
+    class Params(TypedDict, total=False):
+        card_id: Required[Annotated[str, PropertyInfo(alias="cardID")]]
+
+
+    transformed = transform({"card_id": "<my card ID>"}, Params)
+    # {'cardID': '<my card ID>'}
+    ```
+
+    Any keys / data that does not have type information given will be included as is.
+
+    It should be noted that the transformations that this function does are not represented in the type system.
+    """
+    transformed = _transform_recursive(data, annotation=cast(type, expected_type))
+    return cast(_T, transformed)
+
+
+def _get_annotated_type(type_: type) -> type | None:
+    """If the given type is an `Annotated` type then it is returned, if not `None` is returned.
+
+    This also unwraps the type when applicable, e.g. `Required[Annotated[T, ...]]`
+    """
+    if is_required_type(type_):
+        # Unwrap `Required[Annotated[T, ...]]` to `Annotated[T, ...]`
+        type_ = get_args(type_)[0]
+
+    if is_annotated_type(type_):
+        return type_
+
+    return None
+
+
+def _maybe_transform_key(key: str, type_: type) -> str:
+    """Transform the given `data` based on the annotations provided in `type_`.
+
+    Note: this function only looks at `Annotated` types that contain `PropertInfo` metadata.
+    """
+    annotated_type = _get_annotated_type(type_)
+    if annotated_type is None:
+        # no `Annotated` definition for this type, no transformation needed
+        return key
+
+    # ignore the first argument as it is the actual type
+    annotations = get_args(annotated_type)[1:]
+    for annotation in annotations:
+        if isinstance(annotation, PropertyInfo) and annotation.alias is not None:
+            return annotation.alias
+
+    return key
+
+
+def _transform_recursive(
+    data: object,
+    *,
+    annotation: type,
+    inner_type: type | None = None,
+) -> object:
+    """Transform the given data against the expected type.
+
+    Args:
+        annotation: The direct type annotation given to the particular piece of data.
+            This may or may not be wrapped in metadata types, e.g. `Required[T]`, `Annotated[T, ...]` etc
+
+        inner_type: If applicable, this is the "inside" type. This is useful in certain cases where the outside type
+            is a container type such as `List[T]`. In that case `inner_type` should be set to `T` so that each entry in
+            the list can be transformed using the metadata from the container type.
+
+            Defaults to the same value as the `annotation` argument.
+    """
+    if inner_type is None:
+        inner_type = annotation
+
+    stripped_type = strip_annotated_type(inner_type)
+    if is_typeddict(stripped_type) and is_mapping(data):
+        return _transform_typeddict(data, stripped_type)
+
+    if (
+        # List[T]
+        (is_list_type(stripped_type) and is_list(data))
+        # Iterable[T]
+        or (is_iterable_type(stripped_type) and is_iterable(data) and not isinstance(data, str))
+    ):
+        inner_type = extract_type_arg(stripped_type, 0)
+        return [_transform_recursive(d, annotation=annotation, inner_type=inner_type) for d in data]
+
+    if is_union_type(stripped_type):
+        # For union types we run the transformation against all subtypes to ensure that everything is transformed.
+        #
+        # TODO: there may be edge cases where the same normalized field name will transform to two different names
+        # in different subtypes.
+        for subtype in get_args(stripped_type):
+            data = _transform_recursive(data, annotation=annotation, inner_type=subtype)
+        return data
+
+    if isinstance(data, pydantic.BaseModel):
+        return model_dump(data, exclude_unset=True)
+
+    annotated_type = _get_annotated_type(annotation)
+    if annotated_type is None:
+        return data
+
+    # ignore the first argument as it is the actual type
+    annotations = get_args(annotated_type)[1:]
+    for annotation in annotations:
+        if isinstance(annotation, PropertyInfo) and annotation.format is not None:
+            return _format_data(data, annotation.format, annotation.format_template)
+
+    return data
+
+
+def _format_data(data: object, format_: PropertyFormat, format_template: str | None) -> object:
+    if isinstance(data, date | datetime):
+        if format_ == "iso8601":
+            return data.isoformat()
+
+        if format_ == "custom" and format_template is not None:
+            return data.strftime(format_template)
+
+    if format_ == "base64" and is_base64_file_input(data):
+        binary: str | bytes | None = None
+
+        if isinstance(data, pathlib.Path):
+            binary = data.read_bytes()
+        elif isinstance(data, io.IOBase):
+            binary = data.read()
+
+            if isinstance(binary, str):  # type: ignore[unreachable]
+                binary = binary.encode()
+
+        if not isinstance(binary, bytes):
+            raise RuntimeError(f"Could not read bytes from {data}; Received {type(binary)}")
+
+        return base64.b64encode(binary).decode("ascii")
+
+    return data
+
+
+def _transform_typeddict(
+    data: Mapping[str, object],
+    expected_type: type,
+) -> Mapping[str, object]:
+    result: dict[str, object] = {}
+    annotations = get_type_hints(expected_type, include_extras=True)
+    for key, value in data.items():
+        type_ = annotations.get(key)
+        if type_ is None:
+            # we do not have a type annotation for this field, leave it as is
+            result[key] = value
+        else:
+            result[_maybe_transform_key(key, type_)] = _transform_recursive(value, annotation=type_)
+    return result
+
+
+async def async_maybe_transform(
+    data: object,
+    expected_type: object,
+) -> Any | None:
+    """Wrapper over `async_transform()` that allows `None` to be passed.
+
+    See `async_transform()` for more details.
+    """
+    if data is None:
+        return None
+    return await async_transform(data, expected_type)
+
+
+async def async_transform(
+    data: _T,
+    expected_type: object,
+) -> _T:
+    """Transform dictionaries based off of type information from the given type, for example:
+
+    ```py
+    class Params(TypedDict, total=False):
+        card_id: Required[Annotated[str, PropertyInfo(alias="cardID")]]
+
+
+    transformed = transform({"card_id": "<my card ID>"}, Params)
+    # {'cardID': '<my card ID>'}
+    ```
+
+    Any keys / data that does not have type information given will be included as is.
+
+    It should be noted that the transformations that this function does are not represented in the type system.
+    """
+    transformed = await _async_transform_recursive(data, annotation=cast(type, expected_type))
+    return cast(_T, transformed)
+
+
+async def _async_transform_recursive(
+    data: object,
+    *,
+    annotation: type,
+    inner_type: type | None = None,
+) -> object:
+    """Transform the given data against the expected type.
+
+    Args:
+        annotation: The direct type annotation given to the particular piece of data.
+            This may or may not be wrapped in metadata types, e.g. `Required[T]`, `Annotated[T, ...]` etc
+
+        inner_type: If applicable, this is the "inside" type. This is useful in certain cases where the outside type
+            is a container type such as `List[T]`. In that case `inner_type` should be set to `T` so that each entry in
+            the list can be transformed using the metadata from the container type.
+
+            Defaults to the same value as the `annotation` argument.
+    """
+    if inner_type is None:
+        inner_type = annotation
+
+    stripped_type = strip_annotated_type(inner_type)
+    if is_typeddict(stripped_type) and is_mapping(data):
+        return await _async_transform_typeddict(data, stripped_type)
+
+    if (
+        # List[T]
+        (is_list_type(stripped_type) and is_list(data))
+        # Iterable[T]
+        or (is_iterable_type(stripped_type) and is_iterable(data) and not isinstance(data, str))
+    ):
+        inner_type = extract_type_arg(stripped_type, 0)
+        return [await _async_transform_recursive(d, annotation=annotation, inner_type=inner_type) for d in data]
+
+    if is_union_type(stripped_type):
+        # For union types we run the transformation against all subtypes to ensure that everything is transformed.
+        #
+        # TODO: there may be edge cases where the same normalized field name will transform to two different names
+        # in different subtypes.
+        for subtype in get_args(stripped_type):
+            data = await _async_transform_recursive(data, annotation=annotation, inner_type=subtype)
+        return data
+
+    if isinstance(data, pydantic.BaseModel):
+        return model_dump(data, exclude_unset=True)
+
+    annotated_type = _get_annotated_type(annotation)
+    if annotated_type is None:
+        return data
+
+    # ignore the first argument as it is the actual type
+    annotations = get_args(annotated_type)[1:]
+    for annotation in annotations:
+        if isinstance(annotation, PropertyInfo) and annotation.format is not None:
+            return await _async_format_data(data, annotation.format, annotation.format_template)
+
+    return data
+
+
+async def _async_format_data(data: object, format_: PropertyFormat, format_template: str | None) -> object:
+    if isinstance(data, date | datetime):
+        if format_ == "iso8601":
+            return data.isoformat()
+
+        if format_ == "custom" and format_template is not None:
+            return data.strftime(format_template)
+
+    if format_ == "base64" and is_base64_file_input(data):
+        binary: str | bytes | None = None
+
+        if isinstance(data, pathlib.Path):
+            binary = await anyio.Path(data).read_bytes()
+        elif isinstance(data, io.IOBase):
+            binary = data.read()
+
+            if isinstance(binary, str):  # type: ignore[unreachable]
+                binary = binary.encode()
+
+        if not isinstance(binary, bytes):
+            raise RuntimeError(f"Could not read bytes from {data}; Received {type(binary)}")
+
+        return base64.b64encode(binary).decode("ascii")
+
+    return data
+
+
+async def _async_transform_typeddict(
+    data: Mapping[str, object],
+    expected_type: type,
+) -> Mapping[str, object]:
+    result: dict[str, object] = {}
+    annotations = get_type_hints(expected_type, include_extras=True)
+    for key, value in data.items():
+        type_ = annotations.get(key)
+        if type_ is None:
+            # we do not have a type annotation for this field, leave it as is
+            result[key] = value
+        else:
+            result[_maybe_transform_key(key, type_)] = await _async_transform_recursive(value, annotation=type_)
+    return result

+ 122 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/core/_utils/_typing.py

@@ -0,0 +1,122 @@
+from __future__ import annotations
+
+from collections import abc as _c_abc
+from collections.abc import Iterable
+from typing import Annotated, Any, TypeVar, cast, get_args, get_origin
+
+from typing_extensions import Required
+
+from .._base_compat import is_union as _is_union
+from .._base_type import InheritsGeneric
+
+
+def is_annotated_type(typ: type) -> bool:
+    return get_origin(typ) == Annotated
+
+
+def is_list_type(typ: type) -> bool:
+    return (get_origin(typ) or typ) == list
+
+
+def is_iterable_type(typ: type) -> bool:
+    """If the given type is `typing.Iterable[T]`"""
+    origin = get_origin(typ) or typ
+    return origin in {Iterable, _c_abc.Iterable}
+
+
+def is_union_type(typ: type) -> bool:
+    return _is_union(get_origin(typ))
+
+
+def is_required_type(typ: type) -> bool:
+    return get_origin(typ) == Required
+
+
+def is_typevar(typ: type) -> bool:
+    # type ignore is required because type checkers
+    # think this expression will always return False
+    return type(typ) == TypeVar  # type: ignore
+
+
+# Extracts T from Annotated[T, ...] or from Required[Annotated[T, ...]]
+def strip_annotated_type(typ: type) -> type:
+    if is_required_type(typ) or is_annotated_type(typ):
+        return strip_annotated_type(cast(type, get_args(typ)[0]))
+
+    return typ
+
+
+def extract_type_arg(typ: type, index: int) -> type:
+    args = get_args(typ)
+    try:
+        return cast(type, args[index])
+    except IndexError as err:
+        raise RuntimeError(f"Expected type {typ} to have a type argument at index {index} but it did not") from err
+
+
+def extract_type_var_from_base(
+    typ: type,
+    *,
+    generic_bases: tuple[type, ...],
+    index: int,
+    failure_message: str | None = None,
+) -> type:
+    """Given a type like `Foo[T]`, returns the generic type variable `T`.
+
+    This also handles the case where a concrete subclass is given, e.g.
+    ```py
+    class MyResponse(Foo[bytes]):
+        ...
+
+    extract_type_var(MyResponse, bases=(Foo,), index=0) -> bytes
+    ```
+
+    And where a generic subclass is given:
+    ```py
+    _T = TypeVar('_T')
+    class MyResponse(Foo[_T]):
+        ...
+
+    extract_type_var(MyResponse[bytes], bases=(Foo,), index=0) -> bytes
+    ```
+    """
+    cls = cast(object, get_origin(typ) or typ)
+    if cls in generic_bases:
+        # we're given the class directly
+        return extract_type_arg(typ, index)
+
+    # if a subclass is given
+    # ---
+    # this is needed as __orig_bases__ is not present in the typeshed stubs
+    # because it is intended to be for internal use only, however there does
+    # not seem to be a way to resolve generic TypeVars for inherited subclasses
+    # without using it.
+    if isinstance(cls, InheritsGeneric):
+        target_base_class: Any | None = None
+        for base in cls.__orig_bases__:
+            if base.__origin__ in generic_bases:
+                target_base_class = base
+                break
+
+        if target_base_class is None:
+            raise RuntimeError(
+                "Could not find the generic base class;\n"
+                "This should never happen;\n"
+                f"Does {cls} inherit from one of {generic_bases} ?"
+            )
+
+        extracted = extract_type_arg(target_base_class, index)
+        if is_typevar(extracted):
+            # If the extracted type argument is itself a type variable
+            # then that means the subclass itself is generic, so we have
+            # to resolve the type argument from the class itself, not
+            # the base class.
+            #
+            # Note: if there is more than 1 type argument, the subclass could
+            # change the ordering of the type arguments, this is not currently
+            # supported.
+            return extract_type_arg(typ, index)
+
+        return extracted
+
+    raise RuntimeError(failure_message or f"Could not resolve inner type variable at index {index} for {typ}")

+ 409 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/core/_utils/_utils.py

@@ -0,0 +1,409 @@
+from __future__ import annotations
+
+import functools
+import inspect
+import os
+import re
+from collections.abc import Callable, Iterable, Mapping, Sequence
+from pathlib import Path
+from typing import (
+    Any,
+    TypeGuard,
+    TypeVar,
+    Union,
+    cast,
+    overload,
+)
+
+import sniffio
+
+from .._base_compat import parse_date as parse_date  # noqa: PLC0414
+from .._base_compat import parse_datetime as parse_datetime  # noqa: PLC0414
+from .._base_type import FileTypes, Headers, HeadersLike, NotGiven, NotGivenOr
+
+
+def remove_notgiven_indict(obj):
+    if obj is None or (not isinstance(obj, Mapping)):
+        return obj
+    return {key: value for key, value in obj.items() if not isinstance(value, NotGiven)}
+
+
+_T = TypeVar("_T")
+_TupleT = TypeVar("_TupleT", bound=tuple[object, ...])
+_MappingT = TypeVar("_MappingT", bound=Mapping[str, object])
+_SequenceT = TypeVar("_SequenceT", bound=Sequence[object])
+CallableT = TypeVar("CallableT", bound=Callable[..., Any])
+
+
+def flatten(t: Iterable[Iterable[_T]]) -> list[_T]:
+    return [item for sublist in t for item in sublist]
+
+
+def extract_files(
+    # TODO: this needs to take Dict but variance issues.....
+    # create protocol type ?
+    query: Mapping[str, object],
+    *,
+    paths: Sequence[Sequence[str]],
+) -> list[tuple[str, FileTypes]]:
+    """Recursively extract files from the given dictionary based on specified paths.
+
+    A path may look like this ['foo', 'files', '<array>', 'data'].
+
+    Note: this mutates the given dictionary.
+    """
+    files: list[tuple[str, FileTypes]] = []
+    for path in paths:
+        files.extend(_extract_items(query, path, index=0, flattened_key=None))
+    return files
+
+
+def _extract_items(
+    obj: object,
+    path: Sequence[str],
+    *,
+    index: int,
+    flattened_key: str | None,
+) -> list[tuple[str, FileTypes]]:
+    try:
+        key = path[index]
+    except IndexError:
+        if isinstance(obj, NotGiven):
+            # no value was provided - we can safely ignore
+            return []
+
+        # cyclical import
+        from .._files import assert_is_file_content
+
+        # We have exhausted the path, return the entry we found.
+        assert_is_file_content(obj, key=flattened_key)
+        assert flattened_key is not None
+        return [(flattened_key, cast(FileTypes, obj))]
+
+    index += 1
+    if is_dict(obj):
+        try:
+            # We are at the last entry in the path so we must remove the field
+            if (len(path)) == index:
+                item = obj.pop(key)
+            else:
+                item = obj[key]
+        except KeyError:
+            # Key was not present in the dictionary, this is not indicative of an error
+            # as the given path may not point to a required field. We also do not want
+            # to enforce required fields as the API may differ from the spec in some cases.
+            return []
+        if flattened_key is None:
+            flattened_key = key
+        else:
+            flattened_key += f"[{key}]"
+        return _extract_items(
+            item,
+            path,
+            index=index,
+            flattened_key=flattened_key,
+        )
+    elif is_list(obj):
+        if key != "<array>":
+            return []
+
+        return flatten(
+            [
+                _extract_items(
+                    item,
+                    path,
+                    index=index,
+                    flattened_key=flattened_key + "[]" if flattened_key is not None else "[]",
+                )
+                for item in obj
+            ]
+        )
+
+    # Something unexpected was passed, just ignore it.
+    return []
+
+
+def is_given(obj: NotGivenOr[_T]) -> TypeGuard[_T]:
+    return not isinstance(obj, NotGiven)
+
+
+# Type safe methods for narrowing types with TypeVars.
+# The default narrowing for isinstance(obj, dict) is dict[unknown, unknown],
+# however this cause Pyright to rightfully report errors. As we know we don't
+# care about the contained types we can safely use `object` in it's place.
+#
+# There are two separate functions defined, `is_*` and `is_*_t` for different use cases.
+# `is_*` is for when you're dealing with an unknown input
+# `is_*_t` is for when you're narrowing a known union type to a specific subset
+
+
+def is_tuple(obj: object) -> TypeGuard[tuple[object, ...]]:
+    return isinstance(obj, tuple)
+
+
+def is_tuple_t(obj: _TupleT | object) -> TypeGuard[_TupleT]:
+    return isinstance(obj, tuple)
+
+
+def is_sequence(obj: object) -> TypeGuard[Sequence[object]]:
+    return isinstance(obj, Sequence)
+
+
+def is_sequence_t(obj: _SequenceT | object) -> TypeGuard[_SequenceT]:
+    return isinstance(obj, Sequence)
+
+
+def is_mapping(obj: object) -> TypeGuard[Mapping[str, object]]:
+    return isinstance(obj, Mapping)
+
+
+def is_mapping_t(obj: _MappingT | object) -> TypeGuard[_MappingT]:
+    return isinstance(obj, Mapping)
+
+
+def is_dict(obj: object) -> TypeGuard[dict[object, object]]:
+    return isinstance(obj, dict)
+
+
+def is_list(obj: object) -> TypeGuard[list[object]]:
+    return isinstance(obj, list)
+
+
+def is_iterable(obj: object) -> TypeGuard[Iterable[object]]:
+    return isinstance(obj, Iterable)
+
+
+def deepcopy_minimal(item: _T) -> _T:
+    """Minimal reimplementation of copy.deepcopy() that will only copy certain object types:
+
+    - mappings, e.g. `dict`
+    - list
+
+    This is done for performance reasons.
+    """
+    if is_mapping(item):
+        return cast(_T, {k: deepcopy_minimal(v) for k, v in item.items()})
+    if is_list(item):
+        return cast(_T, [deepcopy_minimal(entry) for entry in item])
+    return item
+
+
+# copied from https://github.com/Rapptz/RoboDanny
+def human_join(seq: Sequence[str], *, delim: str = ", ", final: str = "or") -> str:
+    size = len(seq)
+    if size == 0:
+        return ""
+
+    if size == 1:
+        return seq[0]
+
+    if size == 2:
+        return f"{seq[0]} {final} {seq[1]}"
+
+    return delim.join(seq[:-1]) + f" {final} {seq[-1]}"
+
+
+def quote(string: str) -> str:
+    """Add single quotation marks around the given string. Does *not* do any escaping."""
+    return f"'{string}'"
+
+
+def required_args(*variants: Sequence[str]) -> Callable[[CallableT], CallableT]:
+    """Decorator to enforce a given set of arguments or variants of arguments are passed to the decorated function.
+
+    Useful for enforcing runtime validation of overloaded functions.
+
+    Example usage:
+    ```py
+    @overload
+    def foo(*, a: str) -> str:
+        ...
+
+
+    @overload
+    def foo(*, b: bool) -> str:
+        ...
+
+
+    # This enforces the same constraints that a static type checker would
+    # i.e. that either a or b must be passed to the function
+    @required_args(["a"], ["b"])
+    def foo(*, a: str | None = None, b: bool | None = None) -> str:
+        ...
+    ```
+    """
+
+    def inner(func: CallableT) -> CallableT:
+        params = inspect.signature(func).parameters
+        positional = [
+            name
+            for name, param in params.items()
+            if param.kind
+            in {
+                param.POSITIONAL_ONLY,
+                param.POSITIONAL_OR_KEYWORD,
+            }
+        ]
+
+        @functools.wraps(func)
+        def wrapper(*args: object, **kwargs: object) -> object:
+            given_params: set[str] = set()
+            for i, _ in enumerate(args):
+                try:
+                    given_params.add(positional[i])
+                except IndexError:
+                    raise TypeError(
+                        f"{func.__name__}() takes {len(positional)} argument(s) but {len(args)} were given"
+                    ) from None
+
+            given_params.update(kwargs.keys())
+
+            for variant in variants:
+                matches = all(param in given_params for param in variant)
+                if matches:
+                    break
+            else:  # no break
+                if len(variants) > 1:
+                    variations = human_join(
+                        ["(" + human_join([quote(arg) for arg in variant], final="and") + ")" for variant in variants]
+                    )
+                    msg = f"Missing required arguments; Expected either {variations} arguments to be given"
+                else:
+                    # TODO: this error message is not deterministic
+                    missing = list(set(variants[0]) - given_params)
+                    if len(missing) > 1:
+                        msg = f"Missing required arguments: {human_join([quote(arg) for arg in missing])}"
+                    else:
+                        msg = f"Missing required argument: {quote(missing[0])}"
+                raise TypeError(msg)
+            return func(*args, **kwargs)
+
+        return wrapper  # type: ignore
+
+    return inner
+
+
+_K = TypeVar("_K")
+_V = TypeVar("_V")
+
+
+@overload
+def strip_not_given(obj: None) -> None: ...
+
+
+@overload
+def strip_not_given(obj: Mapping[_K, _V | NotGiven]) -> dict[_K, _V]: ...
+
+
+@overload
+def strip_not_given(obj: object) -> object: ...
+
+
+def strip_not_given(obj: object | None) -> object:
+    """Remove all top-level keys where their values are instances of `NotGiven`"""
+    if obj is None:
+        return None
+
+    if not is_mapping(obj):
+        return obj
+
+    return {key: value for key, value in obj.items() if not isinstance(value, NotGiven)}
+
+
+def coerce_integer(val: str) -> int:
+    return int(val, base=10)
+
+
+def coerce_float(val: str) -> float:
+    return float(val)
+
+
+def coerce_boolean(val: str) -> bool:
+    return val in {"true", "1", "on"}
+
+
+def maybe_coerce_integer(val: str | None) -> int | None:
+    if val is None:
+        return None
+    return coerce_integer(val)
+
+
+def maybe_coerce_float(val: str | None) -> float | None:
+    if val is None:
+        return None
+    return coerce_float(val)
+
+
+def maybe_coerce_boolean(val: str | None) -> bool | None:
+    if val is None:
+        return None
+    return coerce_boolean(val)
+
+
+def removeprefix(string: str, prefix: str) -> str:
+    """Remove a prefix from a string.
+
+    Backport of `str.removeprefix` for Python < 3.9
+    """
+    if string.startswith(prefix):
+        return string[len(prefix) :]
+    return string
+
+
+def removesuffix(string: str, suffix: str) -> str:
+    """Remove a suffix from a string.
+
+    Backport of `str.removesuffix` for Python < 3.9
+    """
+    if string.endswith(suffix):
+        return string[: -len(suffix)]
+    return string
+
+
+def file_from_path(path: str) -> FileTypes:
+    contents = Path(path).read_bytes()
+    file_name = os.path.basename(path)
+    return (file_name, contents)
+
+
+def get_required_header(headers: HeadersLike, header: str) -> str:
+    lower_header = header.lower()
+    if isinstance(headers, Mapping):
+        headers = cast(Headers, headers)
+        for k, v in headers.items():
+            if k.lower() == lower_header and isinstance(v, str):
+                return v
+
+    """ to deal with the case where the header looks like Stainless-Event-Id """
+    intercaps_header = re.sub(r"([^\w])(\w)", lambda pat: pat.group(1) + pat.group(2).upper(), header.capitalize())
+
+    for normalized_header in [header, lower_header, header.upper(), intercaps_header]:
+        value = headers.get(normalized_header)
+        if value:
+            return value
+
+    raise ValueError(f"Could not find {header} header")
+
+
+def get_async_library() -> str:
+    try:
+        return sniffio.current_async_library()
+    except Exception:
+        return "false"
+
+
+def drop_prefix_image_data(content: Union[str, list[dict]]) -> Union[str, list[dict]]:
+    """
+    删除 ;base64, 前缀
+    :param image_data:
+    :return:
+    """
+    if isinstance(content, list):
+        for data in content:
+            if data.get("type") == "image_url":
+                image_data = data.get("image_url").get("url")
+                if image_data.startswith("data:image/"):
+                    image_data = image_data.split("base64,")[-1]
+                    data["image_url"]["url"] = image_data
+
+    return content

+ 78 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/core/logs.py

@@ -0,0 +1,78 @@
+import logging
+import os
+import time
+
+logger = logging.getLogger(__name__)
+
+
+class LoggerNameFilter(logging.Filter):
+    def filter(self, record):
+        # return record.name.startswith("loom_core") or record.name in "ERROR" or (
+        #         record.name.startswith("uvicorn.error")
+        #         and record.getMessage().startswith("Uvicorn running on")
+        # )
+        return True
+
+
+def get_log_file(log_path: str, sub_dir: str):
+    """
+    sub_dir should contain a timestamp.
+    """
+    log_dir = os.path.join(log_path, sub_dir)
+    # Here should be creating a new directory each time, so `exist_ok=False`
+    os.makedirs(log_dir, exist_ok=False)
+    return os.path.join(log_dir, "zhipuai.log")
+
+
+def get_config_dict(log_level: str, log_file_path: str, log_backup_count: int, log_max_bytes: int) -> dict:
+    # for windows, the path should be a raw string.
+    log_file_path = log_file_path.encode("unicode-escape").decode() if os.name == "nt" else log_file_path
+    log_level = log_level.upper()
+    config_dict = {
+        "version": 1,
+        "disable_existing_loggers": False,
+        "formatters": {
+            "formatter": {"format": ("%(asctime)s %(name)-12s %(process)d %(levelname)-8s %(message)s")},
+        },
+        "filters": {
+            "logger_name_filter": {
+                "()": __name__ + ".LoggerNameFilter",
+            },
+        },
+        "handlers": {
+            "stream_handler": {
+                "class": "logging.StreamHandler",
+                "formatter": "formatter",
+                "level": log_level,
+                # "stream": "ext://sys.stdout",
+                # "filters": ["logger_name_filter"],
+            },
+            "file_handler": {
+                "class": "logging.handlers.RotatingFileHandler",
+                "formatter": "formatter",
+                "level": log_level,
+                "filename": log_file_path,
+                "mode": "a",
+                "maxBytes": log_max_bytes,
+                "backupCount": log_backup_count,
+                "encoding": "utf8",
+            },
+        },
+        "loggers": {
+            "loom_core": {
+                "handlers": ["stream_handler", "file_handler"],
+                "level": log_level,
+                "propagate": False,
+            }
+        },
+        "root": {
+            "level": log_level,
+            "handlers": ["stream_handler", "file_handler"],
+        },
+    }
+    return config_dict
+
+
+def get_timestamp_ms():
+    t = time.time()
+    return int(round(t * 1000))

+ 62 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/core/pagination.py

@@ -0,0 +1,62 @@
+# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
+
+from typing import Any, Generic, Optional, TypeVar, cast
+
+from typing_extensions import Protocol, override, runtime_checkable
+
+from ._http_client import BasePage, BaseSyncPage, PageInfo
+
+__all__ = ["SyncPage", "SyncCursorPage"]
+
+_T = TypeVar("_T")
+
+
+@runtime_checkable
+class CursorPageItem(Protocol):
+    id: Optional[str]
+
+
+class SyncPage(BaseSyncPage[_T], BasePage[_T], Generic[_T]):
+    """Note: no pagination actually occurs yet, this is for forwards-compatibility."""
+
+    data: list[_T]
+    object: str
+
+    @override
+    def _get_page_items(self) -> list[_T]:
+        data = self.data
+        if not data:
+            return []
+        return data
+
+    @override
+    def next_page_info(self) -> None:
+        """
+        This page represents a response that isn't actually paginated at the API level
+        so there will never be a next page.
+        """
+        return None
+
+
+class SyncCursorPage(BaseSyncPage[_T], BasePage[_T], Generic[_T]):
+    data: list[_T]
+
+    @override
+    def _get_page_items(self) -> list[_T]:
+        data = self.data
+        if not data:
+            return []
+        return data
+
+    @override
+    def next_page_info(self) -> Optional[PageInfo]:
+        data = self.data
+        if not data:
+            return None
+
+        item = cast(Any, data[-1])
+        if not isinstance(item, CursorPageItem) or item.id is None:
+            # TODO emit warning log
+            return None
+
+        return PageInfo(params={"after": item.id})

+ 5 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/assistant/__init__.py

@@ -0,0 +1,5 @@
+from .assistant_completion import AssistantCompletion
+
+__all__ = [
+    "AssistantCompletion",
+]

+ 40 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/assistant/assistant_completion.py

@@ -0,0 +1,40 @@
+from typing import Any, Optional
+
+from ...core import BaseModel
+from .message import MessageContent
+
+__all__ = ["AssistantCompletion", "CompletionUsage"]
+
+
+class ErrorInfo(BaseModel):
+    code: str  # 错误码
+    message: str  # 错误信息
+
+
+class AssistantChoice(BaseModel):
+    index: int  # 结果下标
+    delta: MessageContent  # 当前会话输出消息体
+    finish_reason: str
+    """
+    # 推理结束原因 stop代表推理自然结束或触发停止词。  sensitive 代表模型推理内容被安全审核接口拦截。请注意,针对此类内容,请用户自行判断并决定是否撤回已公开的内容。 
+    # network_error 代表模型推理服务异常。
+    """  # noqa: E501
+    metadata: dict  # 元信息,拓展字段
+
+
+class CompletionUsage(BaseModel):
+    prompt_tokens: int  # 输入的 tokens 数量
+    completion_tokens: int  # 输出的 tokens 数量
+    total_tokens: int  # 总 tokens 数量
+
+
+class AssistantCompletion(BaseModel):
+    id: str  # 请求 ID
+    conversation_id: str  # 会话 ID
+    assistant_id: str  # 智能体 ID
+    created: int  # 请求创建时间,Unix 时间戳
+    status: str  # 返回状态,包括:`completed` 表示生成结束`in_progress`表示生成中 `failed` 表示生成异常
+    last_error: Optional[ErrorInfo]  # 异常信息
+    choices: list[AssistantChoice]  # 增量返回的信息
+    metadata: Optional[dict[str, Any]]  # 元信息,拓展字段
+    usage: Optional[CompletionUsage]  # tokens 数量统计

+ 7 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/assistant/assistant_conversation_params.py

@@ -0,0 +1,7 @@
+from typing import TypedDict
+
+
+class ConversationParameters(TypedDict, total=False):
+    assistant_id: str  # 智能体 ID
+    page: int  # 当前分页
+    page_size: int  # 分页数量

+ 29 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/assistant/assistant_conversation_resp.py

@@ -0,0 +1,29 @@
+from ...core import BaseModel
+
+__all__ = ["ConversationUsageListResp"]
+
+
+class Usage(BaseModel):
+    prompt_tokens: int  # 用户输入的 tokens 数量
+    completion_tokens: int  # 模型输入的 tokens 数量
+    total_tokens: int  # 总 tokens 数量
+
+
+class ConversationUsage(BaseModel):
+    id: str  # 会话 id
+    assistant_id: str  # 智能体Assistant id
+    create_time: int  # 创建时间
+    update_time: int  # 更新时间
+    usage: Usage  # 会话中 tokens 数量统计
+
+
+class ConversationUsageList(BaseModel):
+    assistant_id: str  # 智能体id
+    has_more: bool  # 是否还有更多页
+    conversation_list: list[ConversationUsage]  # 返回的
+
+
+class ConversationUsageListResp(BaseModel):
+    code: int
+    msg: str
+    data: ConversationUsageList

+ 32 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/assistant/assistant_create_params.py

@@ -0,0 +1,32 @@
+from typing import Optional, TypedDict, Union
+
+
+class AssistantAttachments:
+    file_id: str
+
+
+class MessageTextContent:
+    type: str  # 目前支持 type = text
+    text: str
+
+
+MessageContent = Union[MessageTextContent]
+
+
+class ConversationMessage(TypedDict):
+    """会话消息体"""
+
+    role: str  # 用户的输入角色,例如 'user'
+    content: list[MessageContent]  # 会话消息体的内容
+
+
+class AssistantParameters(TypedDict, total=False):
+    """智能体参数类"""
+
+    assistant_id: str  # 智能体 ID
+    conversation_id: Optional[str]  # 会话 ID,不传则创建新会话
+    model: str  # 模型名称,默认为 'GLM-4-Assistant'
+    stream: bool  # 是否支持流式 SSE,需要传入 True
+    messages: list[ConversationMessage]  # 会话消息体
+    attachments: Optional[list[AssistantAttachments]]  # 会话指定的文件,非必填
+    metadata: Optional[dict]  # 元信息,拓展字段,非必填

+ 21 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/assistant/assistant_support_resp.py

@@ -0,0 +1,21 @@
+from ...core import BaseModel
+
+__all__ = ["AssistantSupportResp"]
+
+
+class AssistantSupport(BaseModel):
+    assistant_id: str  # 智能体的 Assistant id,用于智能体会话
+    created_at: int  # 创建时间
+    updated_at: int  # 更新时间
+    name: str  # 智能体名称
+    avatar: str  # 智能体头像
+    description: str  # 智能体描述
+    status: str  # 智能体状态,目前只有 publish
+    tools: list[str]  # 智能体支持的工具名
+    starter_prompts: list[str]  # 智能体启动推荐的 prompt
+
+
+class AssistantSupportResp(BaseModel):
+    code: int
+    msg: str
+    data: list[AssistantSupport]  # 智能体列表

+ 3 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/assistant/message/__init__.py

@@ -0,0 +1,3 @@
+from .message_content import MessageContent
+
+__all__ = ["MessageContent"]

+ 13 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/assistant/message/message_content.py

@@ -0,0 +1,13 @@
+from typing import Annotated, TypeAlias, Union
+
+from ....core._utils import PropertyInfo
+from .text_content_block import TextContentBlock
+from .tools_delta_block import ToolsDeltaBlock
+
+__all__ = ["MessageContent"]
+
+
+MessageContent: TypeAlias = Annotated[
+    Union[ToolsDeltaBlock, TextContentBlock],
+    PropertyInfo(discriminator="type"),
+]

+ 14 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/assistant/message/text_content_block.py

@@ -0,0 +1,14 @@
+from typing import Literal
+
+from ....core import BaseModel
+
+__all__ = ["TextContentBlock"]
+
+
+class TextContentBlock(BaseModel):
+    content: str
+
+    role: str = "assistant"
+
+    type: Literal["content"] = "content"
+    """Always `content`."""

+ 27 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/assistant/message/tools/code_interpreter_delta_block.py

@@ -0,0 +1,27 @@
+from typing import Literal
+
+__all__ = ["CodeInterpreterToolBlock"]
+
+from .....core import BaseModel
+
+
+class CodeInterpreterToolOutput(BaseModel):
+    """代码工具输出结果"""
+
+    type: str  # 代码执行日志,目前只有 logs
+    logs: str  # 代码执行的日志结果
+    error_msg: str  # 错误信息
+
+
+class CodeInterpreter(BaseModel):
+    """代码解释器"""
+
+    input: str  # 生成的代码片段,输入给代码沙盒
+    outputs: list[CodeInterpreterToolOutput]  # 代码执行后的输出结果
+
+
+class CodeInterpreterToolBlock(BaseModel):
+    """代码工具块"""
+
+    code_interpreter: CodeInterpreter  # 代码解释器对象
+    type: Literal["code_interpreter"]  # 调用工具的类型,始终为 `code_interpreter`

+ 21 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/assistant/message/tools/drawing_tool_delta_block.py

@@ -0,0 +1,21 @@
+from typing import Literal
+
+from .....core import BaseModel
+
+__all__ = ["DrawingToolBlock"]
+
+
+class DrawingToolOutput(BaseModel):
+    image: str
+
+
+class DrawingTool(BaseModel):
+    input: str
+    outputs: list[DrawingToolOutput]
+
+
+class DrawingToolBlock(BaseModel):
+    drawing_tool: DrawingTool
+
+    type: Literal["drawing_tool"]
+    """Always `drawing_tool`."""

+ 22 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/assistant/message/tools/function_delta_block.py

@@ -0,0 +1,22 @@
+from typing import Literal, Union
+
+__all__ = ["FunctionToolBlock"]
+
+from .....core import BaseModel
+
+
+class FunctionToolOutput(BaseModel):
+    content: str
+
+
+class FunctionTool(BaseModel):
+    name: str
+    arguments: Union[str, dict]
+    outputs: list[FunctionToolOutput]
+
+
+class FunctionToolBlock(BaseModel):
+    function: FunctionTool
+
+    type: Literal["function"]
+    """Always `drawing_tool`."""

+ 41 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/assistant/message/tools/retrieval_delta_black.py

@@ -0,0 +1,41 @@
+from typing import Literal
+
+from .....core import BaseModel
+
+
+class RetrievalToolOutput(BaseModel):
+    """
+    This class represents the output of a retrieval tool.
+
+    Attributes:
+    - text (str): The text snippet retrieved from the knowledge base.
+    - document (str): The name of the document from which the text snippet was retrieved, returned only in intelligent configuration.
+    """  # noqa: E501
+
+    text: str
+    document: str
+
+
+class RetrievalTool(BaseModel):
+    """
+    This class represents the outputs of a retrieval tool.
+
+    Attributes:
+    - outputs (List[RetrievalToolOutput]): A list of text snippets and their respective document names retrieved from the knowledge base.
+    """  # noqa: E501
+
+    outputs: list[RetrievalToolOutput]
+
+
+class RetrievalToolBlock(BaseModel):
+    """
+    This class represents a block for invoking the retrieval tool.
+
+    Attributes:
+    - retrieval (RetrievalTool): An instance of the RetrievalTool class containing the retrieval outputs.
+    - type (Literal["retrieval"]): The type of tool being used, always set to "retrieval".
+    """
+
+    retrieval: RetrievalTool
+    type: Literal["retrieval"]
+    """Always `retrieval`."""

+ 16 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/assistant/message/tools/tools_type.py

@@ -0,0 +1,16 @@
+from typing import Annotated, TypeAlias, Union
+
+from .....core._utils import PropertyInfo
+from .code_interpreter_delta_block import CodeInterpreterToolBlock
+from .drawing_tool_delta_block import DrawingToolBlock
+from .function_delta_block import FunctionToolBlock
+from .retrieval_delta_black import RetrievalToolBlock
+from .web_browser_delta_block import WebBrowserToolBlock
+
+__all__ = ["ToolsType"]
+
+
+ToolsType: TypeAlias = Annotated[
+    Union[DrawingToolBlock, CodeInterpreterToolBlock, WebBrowserToolBlock, RetrievalToolBlock, FunctionToolBlock],
+    PropertyInfo(discriminator="type"),
+]

+ 48 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/assistant/message/tools/web_browser_delta_block.py

@@ -0,0 +1,48 @@
+from typing import Literal
+
+from .....core import BaseModel
+
+__all__ = ["WebBrowserToolBlock"]
+
+
+class WebBrowserOutput(BaseModel):
+    """
+    This class represents the output of a web browser search result.
+
+    Attributes:
+    - title (str): The title of the search result.
+    - link (str): The URL link to the search result's webpage.
+    - content (str): The textual content extracted from the search result.
+    - error_msg (str): Any error message encountered during the search or retrieval process.
+    """
+
+    title: str
+    link: str
+    content: str
+    error_msg: str
+
+
+class WebBrowser(BaseModel):
+    """
+    This class represents the input and outputs of a web browser search.
+
+    Attributes:
+    - input (str): The input query for the web browser search.
+    - outputs (List[WebBrowserOutput]): A list of search results returned by the web browser.
+    """
+
+    input: str
+    outputs: list[WebBrowserOutput]
+
+
+class WebBrowserToolBlock(BaseModel):
+    """
+    This class represents a block for invoking the web browser tool.
+
+    Attributes:
+    - web_browser (WebBrowser): An instance of the WebBrowser class containing the search input and outputs.
+    - type (Literal["web_browser"]): The type of tool being used, always set to "web_browser".
+    """
+
+    web_browser: WebBrowser
+    type: Literal["web_browser"]

+ 16 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/assistant/message/tools_delta_block.py

@@ -0,0 +1,16 @@
+from typing import Literal
+
+from ....core import BaseModel
+from .tools.tools_type import ToolsType
+
+__all__ = ["ToolsDeltaBlock"]
+
+
+class ToolsDeltaBlock(BaseModel):
+    tool_calls: list[ToolsType]
+    """The index of the content part in the message."""
+
+    role: str = "tool"
+
+    type: Literal["tool_calls"] = "tool_calls"
+    """Always `tool_calls`."""

+ 82 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/batch.py

@@ -0,0 +1,82 @@
+# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
+
+import builtins
+from typing import Literal, Optional
+
+from ..core import BaseModel
+from .batch_error import BatchError
+from .batch_request_counts import BatchRequestCounts
+
+__all__ = ["Batch", "Errors"]
+
+
+class Errors(BaseModel):
+    data: Optional[list[BatchError]] = None
+
+    object: Optional[str] = None
+    """这个类型,一直是`list`。"""
+
+
+class Batch(BaseModel):
+    id: str
+
+    completion_window: str
+    """用于执行请求的地址信息。"""
+
+    created_at: int
+    """这是 Unix timestamp (in seconds) 表示的创建时间。"""
+
+    endpoint: str
+    """这是ZhipuAI endpoint的地址。"""
+
+    input_file_id: str
+    """标记为batch的输入文件的ID。"""
+
+    object: Literal["batch"]
+    """这个类型,一直是`batch`."""
+
+    status: Literal[
+        "validating", "failed", "in_progress", "finalizing", "completed", "expired", "cancelling", "cancelled"
+    ]
+    """batch 的状态。"""
+
+    cancelled_at: Optional[int] = None
+    """Unix timestamp (in seconds) 表示的取消时间。"""
+
+    cancelling_at: Optional[int] = None
+    """Unix timestamp (in seconds) 表示发起取消的请求时间 """
+
+    completed_at: Optional[int] = None
+    """Unix timestamp (in seconds) 表示的完成时间。"""
+
+    error_file_id: Optional[str] = None
+    """这个文件id包含了执行请求失败的请求的输出。"""
+
+    errors: Optional[Errors] = None
+
+    expired_at: Optional[int] = None
+    """Unix timestamp (in seconds) 表示的将在过期时间。"""
+
+    expires_at: Optional[int] = None
+    """Unix timestamp (in seconds) 触发过期"""
+
+    failed_at: Optional[int] = None
+    """Unix timestamp (in seconds) 表示的失败时间。"""
+
+    finalizing_at: Optional[int] = None
+    """Unix timestamp (in seconds) 表示的最终时间。"""
+
+    in_progress_at: Optional[int] = None
+    """Unix timestamp (in seconds) 表示的开始处理时间。"""
+
+    metadata: Optional[builtins.object] = None
+    """ 
+    key:value形式的元数据,以便将信息存储
+        结构化格式。键的长度是64个字符,值最长512个字符
+    """
+
+    output_file_id: Optional[str] = None
+    """完成请求的输出文件的ID。"""
+
+    request_counts: Optional[BatchRequestCounts] = None
+    """批次中不同状态的请求计数"""

+ 37 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/batch_create_params.py

@@ -0,0 +1,37 @@
+from __future__ import annotations
+
+from typing import Literal, Optional
+
+from typing_extensions import Required, TypedDict
+
+__all__ = ["BatchCreateParams"]
+
+
+class BatchCreateParams(TypedDict, total=False):
+    completion_window: Required[str]
+    """The time frame within which the batch should be processed.
+
+    Currently only `24h` is supported.
+    """
+
+    endpoint: Required[Literal["/v1/chat/completions", "/v1/embeddings"]]
+    """The endpoint to be used for all requests in the batch.
+
+    Currently `/v1/chat/completions` and `/v1/embeddings` are supported.
+    """
+
+    input_file_id: Required[str]
+    """The ID of an uploaded file that contains requests for the new batch.
+
+    See [upload file](https://platform.openai.com/docs/api-reference/files/create)
+    for how to upload a file.
+
+    Your input file must be formatted as a
+    [JSONL file](https://platform.openai.com/docs/api-reference/batch/requestInput),
+    and must be uploaded with the purpose `batch`.
+    """
+
+    metadata: Optional[dict[str, str]]
+    """Optional custom metadata for the batch."""
+
+    auto_delete_input_file: Optional[bool]

+ 21 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/batch_error.py

@@ -0,0 +1,21 @@
+# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
+
+from typing import Optional
+
+from ..core import BaseModel
+
+__all__ = ["BatchError"]
+
+
+class BatchError(BaseModel):
+    code: Optional[str] = None
+    """定义的业务错误码"""
+
+    line: Optional[int] = None
+    """文件中的行号"""
+
+    message: Optional[str] = None
+    """关于对话文件中的错误的描述"""
+
+    param: Optional[str] = None
+    """参数名称,如果有的话"""

+ 20 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/batch_list_params.py

@@ -0,0 +1,20 @@
+from __future__ import annotations
+
+from typing_extensions import TypedDict
+
+__all__ = ["BatchListParams"]
+
+
+class BatchListParams(TypedDict, total=False):
+    after: str
+    """分页的游标,用于获取下一页的数据。
+
+    `after` 是一个指向当前页面的游标,用于获取下一页的数据。如果没有提供 `after`,则返回第一页的数据。
+    list.
+    """
+
+    limit: int
+    """这个参数用于限制返回的结果数量。
+
+    Limit 用于限制返回的结果数量。默认值为 10
+    """

+ 14 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/batch_request_counts.py

@@ -0,0 +1,14 @@
+from ..core import BaseModel
+
+__all__ = ["BatchRequestCounts"]
+
+
+class BatchRequestCounts(BaseModel):
+    completed: int
+    """这个数字表示已经完成的请求。"""
+
+    failed: int
+    """这个数字表示失败的请求。"""
+
+    total: int
+    """这个数字表示总的请求。"""

+ 2 - 3
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/chat/async_chat_completion.py

@@ -1,10 +1,9 @@
 from typing import Optional
 
-from pydantic import BaseModel
-
+from ...core import BaseModel
 from .chat_completion import CompletionChoice, CompletionUsage
 
-__all__ = ["AsyncTaskStatus"]
+__all__ = ["AsyncTaskStatus", "AsyncCompletion"]
 
 
 class AsyncTaskStatus(BaseModel):

+ 1 - 1
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/chat/chat_completion.py

@@ -1,6 +1,6 @@
 from typing import Optional
 
-from pydantic import BaseModel
+from ...core import BaseModel
 
 __all__ = ["Completion", "CompletionUsage"]
 

+ 4 - 2
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/chat/chat_completion_chunk.py

@@ -1,8 +1,9 @@
-from typing import Optional
+from typing import Any, Optional
 
-from pydantic import BaseModel
+from ...core import BaseModel
 
 __all__ = [
+    "CompletionUsage",
     "ChatCompletionChunk",
     "Choice",
     "ChoiceDelta",
@@ -53,3 +54,4 @@ class ChatCompletionChunk(BaseModel):
     created: Optional[int] = None
     model: Optional[str] = None
     usage: Optional[CompletionUsage] = None
+    extra_json: dict[str, Any]

+ 146 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/chat/code_geex/code_geex_params.py

@@ -0,0 +1,146 @@
+from typing import Literal, Optional
+
+from typing_extensions import Required, TypedDict
+
+__all__ = [
+    "CodeGeexTarget",
+    "CodeGeexContext",
+    "CodeGeexExtra",
+]
+
+
+class CodeGeexTarget(TypedDict, total=False):
+    """补全的内容参数"""
+
+    path: Optional[str]
+    """文件路径"""
+    language: Required[
+        Literal[
+            "c",
+            "c++",
+            "cpp",
+            "c#",
+            "csharp",
+            "c-sharp",
+            "css",
+            "cuda",
+            "dart",
+            "lua",
+            "objectivec",
+            "objective-c",
+            "objective-c++",
+            "python",
+            "perl",
+            "prolog",
+            "swift",
+            "lisp",
+            "java",
+            "scala",
+            "tex",
+            "jsx",
+            "tsx",
+            "vue",
+            "markdown",
+            "html",
+            "php",
+            "js",
+            "javascript",
+            "typescript",
+            "go",
+            "shell",
+            "rust",
+            "sql",
+            "kotlin",
+            "vb",
+            "ruby",
+            "pascal",
+            "r",
+            "fortran",
+            "lean",
+            "matlab",
+            "delphi",
+            "scheme",
+            "basic",
+            "assembly",
+            "groovy",
+            "abap",
+            "gdscript",
+            "haskell",
+            "julia",
+            "elixir",
+            "excel",
+            "clojure",
+            "actionscript",
+            "solidity",
+            "powershell",
+            "erlang",
+            "cobol",
+            "alloy",
+            "awk",
+            "thrift",
+            "sparql",
+            "augeas",
+            "cmake",
+            "f-sharp",
+            "stan",
+            "isabelle",
+            "dockerfile",
+            "rmarkdown",
+            "literate-agda",
+            "tcl",
+            "glsl",
+            "antlr",
+            "verilog",
+            "racket",
+            "standard-ml",
+            "elm",
+            "yaml",
+            "smalltalk",
+            "ocaml",
+            "idris",
+            "visual-basic",
+            "protocol-buffer",
+            "bluespec",
+            "applescript",
+            "makefile",
+            "tcsh",
+            "maple",
+            "systemverilog",
+            "literate-coffeescript",
+            "vhdl",
+            "restructuredtext",
+            "sas",
+            "literate-haskell",
+            "java-server-pages",
+            "coffeescript",
+            "emacs-lisp",
+            "mathematica",
+            "xslt",
+            "zig",
+            "common-lisp",
+            "stata",
+            "agda",
+            "ada",
+        ]
+    ]
+    """代码语言类型,如python"""
+    code_prefix: Required[str]
+    """补全位置的前文"""
+    code_suffix: Required[str]
+    """补全位置的后文"""
+
+
+class CodeGeexContext(TypedDict, total=False):
+    """附加代码"""
+
+    path: Required[str]
+    """附加代码文件的路径"""
+    code: Required[str]
+    """附加的代码内容"""
+
+
+class CodeGeexExtra(TypedDict, total=False):
+    target: Required[CodeGeexTarget]
+    """补全的内容参数"""
+    contexts: Optional[list[CodeGeexContext]]
+    """附加代码"""

+ 1 - 2
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/embeddings.py

@@ -2,8 +2,7 @@ from __future__ import annotations
 
 from typing import Optional
 
-from pydantic import BaseModel
-
+from ..core import BaseModel
 from .chat.chat_completion import CompletionUsage
 
 __all__ = ["Embedding", "EmbeddingsResponded"]

+ 5 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/files/__init__.py

@@ -0,0 +1,5 @@
+from .file_deleted import FileDeleted
+from .file_object import FileObject, ListOfFileObject
+from .upload_detail import UploadDetail
+
+__all__ = ["FileObject", "ListOfFileObject", "UploadDetail", "FileDeleted"]

+ 38 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/files/file_create_params.py

@@ -0,0 +1,38 @@
+from __future__ import annotations
+
+from typing import Literal, Optional
+
+from typing_extensions import Required, TypedDict
+
+__all__ = ["FileCreateParams"]
+
+from ...core import FileTypes
+from . import UploadDetail
+
+
+class FileCreateParams(TypedDict, total=False):
+    file: FileTypes
+    """file和 upload_detail二选一必填"""
+
+    upload_detail: list[UploadDetail]
+    """file和 upload_detail二选一必填"""
+
+    purpose: Required[Literal["fine-tune", "retrieval", "batch"]]
+    """ 
+    上传文件的用途,支持 "fine-tune和 "retrieval"
+    retrieval支持上传Doc、Docx、PDF、Xlsx、URL类型文件,且单个文件的大小不超过 5MB。
+    fine-tune支持上传.jsonl文件且当前单个文件的大小最大可为 100 MB ,文件中语料格式需满足微调指南中所描述的格式。
+    """
+    custom_separator: Optional[list[str]]
+    """ 
+    当 purpose 为 retrieval 且文件类型为 pdf, url, docx 时上传,切片规则默认为 `\n`。
+    """
+    knowledge_id: str
+    """ 
+        当文件上传目的为  retrieval 时,需要指定知识库ID进行上传。
+    """
+
+    sentence_size: int
+    """ 
+        当文件上传目的为  retrieval 时,需要指定知识库ID进行上传。
+    """

+ 13 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/files/file_deleted.py

@@ -0,0 +1,13 @@
+from typing import Literal
+
+from ...core import BaseModel
+
+__all__ = ["FileDeleted"]
+
+
+class FileDeleted(BaseModel):
+    id: str
+
+    deleted: bool
+
+    object: Literal["file"]

+ 2 - 2
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/file_object.py → api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/files/file_object.py

@@ -1,8 +1,8 @@
 from typing import Optional
 
-from pydantic import BaseModel
+from ...core import BaseModel
 
-__all__ = ["FileObject"]
+__all__ = ["FileObject", "ListOfFileObject"]
 
 
 class FileObject(BaseModel):

+ 13 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/files/upload_detail.py

@@ -0,0 +1,13 @@
+from typing import Optional
+
+from ...core import BaseModel
+
+
+class UploadDetail(BaseModel):
+    url: str
+    knowledge_type: int
+    file_name: Optional[str] = None
+    sentence_size: Optional[int] = None
+    custom_separator: Optional[list[str]] = None
+    callback_url: Optional[str] = None
+    callback_header: Optional[dict[str, str]] = None

+ 1 - 1
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/fine_tuning/fine_tuning_job.py

@@ -1,6 +1,6 @@
 from typing import Optional, Union
 
-from pydantic import BaseModel
+from ...core import BaseModel
 
 __all__ = ["FineTuningJob", "Error", "Hyperparameters", "ListOfFineTuningJob"]
 

+ 1 - 1
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/fine_tuning/fine_tuning_job_event.py

@@ -1,6 +1,6 @@
 from typing import Optional, Union
 
-from pydantic import BaseModel
+from ...core import BaseModel
 
 __all__ = ["FineTuningJobEvent", "Metric", "JobEvent"]
 

+ 1 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/fine_tuning/models/__init__.py

@@ -0,0 +1 @@
+from .fine_tuned_models import FineTunedModelsStatus

+ 13 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/fine_tuning/models/fine_tuned_models.py

@@ -0,0 +1,13 @@
+from typing import ClassVar
+
+from ....core import PYDANTIC_V2, BaseModel, ConfigDict
+
+__all__ = ["FineTunedModelsStatus"]
+
+
+class FineTunedModelsStatus(BaseModel):
+    if PYDANTIC_V2:
+        model_config: ClassVar[ConfigDict] = ConfigDict(extra="allow", protected_namespaces=())
+    request_id: str  # 请求id
+    model_name: str  # 模型名称
+    delete_status: str  # 删除状态 deleting(删除中), deleted (已删除)

+ 1 - 1
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/image.py

@@ -2,7 +2,7 @@ from __future__ import annotations
 
 from typing import Optional
 
-from pydantic import BaseModel
+from ..core import BaseModel
 
 __all__ = ["GeneratedImage", "ImagesResponded"]
 

+ 8 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/knowledge/__init__.py

@@ -0,0 +1,8 @@
+from .knowledge import KnowledgeInfo
+from .knowledge_used import KnowledgeStatistics, KnowledgeUsed
+
+__all__ = [
+    "KnowledgeInfo",
+    "KnowledgeStatistics",
+    "KnowledgeUsed",
+]

+ 8 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/knowledge/document/__init__.py

@@ -0,0 +1,8 @@
+from .document import DocumentData, DocumentFailedInfo, DocumentObject, DocumentSuccessinfo
+
+__all__ = [
+    "DocumentData",
+    "DocumentObject",
+    "DocumentSuccessinfo",
+    "DocumentFailedInfo",
+]

+ 51 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/knowledge/document/document.py

@@ -0,0 +1,51 @@
+from typing import Optional
+
+from ....core import BaseModel
+
+__all__ = ["DocumentData", "DocumentObject", "DocumentSuccessinfo", "DocumentFailedInfo"]
+
+
+class DocumentSuccessinfo(BaseModel):
+    documentId: Optional[str] = None
+    """文件id"""
+    filename: Optional[str] = None
+    """文件名称"""
+
+
+class DocumentFailedInfo(BaseModel):
+    failReason: Optional[str] = None
+    """上传失败的原因,包括:文件格式不支持、文件大小超出限制、知识库容量已满、容量上限为 50 万字。"""
+    filename: Optional[str] = None
+    """文件名称"""
+    documentId: Optional[str] = None
+    """知识库id"""
+
+
+class DocumentObject(BaseModel):
+    """文档信息"""
+
+    successInfos: Optional[list[DocumentSuccessinfo]] = None
+    """上传成功的文件信息"""
+    failedInfos: Optional[list[DocumentFailedInfo]] = None
+    """上传失败的文件信息"""
+
+
+class DocumentDataFailInfo(BaseModel):
+    """失败原因"""
+
+    embedding_code: Optional[int] = (
+        None  # 失败码 10001:知识不可用,知识库空间已达上限 10002:知识不可用,知识库空间已达上限(字数超出限制)
+    )
+    embedding_msg: Optional[str] = None  # 失败原因
+
+
+class DocumentData(BaseModel):
+    id: str = None  # 知识唯一id
+    custom_separator: list[str] = None  # 切片规则
+    sentence_size: str = None  # 切片大小
+    length: int = None  # 文件大小(字节)
+    word_num: int = None  # 文件字数
+    name: str = None  # 文件名
+    url: str = None  # 文件下载链接
+    embedding_stat: int = None  # 0:向量化中 1:向量化完成 2:向量化失败
+    failInfo: Optional[DocumentDataFailInfo] = None  # 失败原因 向量化失败embedding_stat=2的时候 会有此值

+ 29 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/knowledge/document/document_edit_params.py

@@ -0,0 +1,29 @@
+from typing import Optional, TypedDict
+
+__all__ = ["DocumentEditParams"]
+
+
+class DocumentEditParams(TypedDict):
+    """
+    知识参数类型定义
+
+    Attributes:
+        id (str): 知识ID
+        knowledge_type (int): 知识类型:
+                        1:文章知识: 支持pdf,url,docx
+                        2.问答知识-文档:  支持pdf,url,docx
+                        3.问答知识-表格:  支持xlsx
+                        4.商品库-表格:  支持xlsx
+                        5.自定义:  支持pdf,url,docx
+        custom_separator (Optional[List[str]]): 当前知识类型为自定义(knowledge_type=5)时的切片规则,默认\n
+        sentence_size (Optional[int]): 当前知识类型为自定义(knowledge_type=5)时的切片字数,取值范围: 20-2000,默认300
+        callback_url (Optional[str]): 回调地址
+        callback_header (Optional[dict]): 回调时携带的header
+    """
+
+    id: str
+    knowledge_type: int
+    custom_separator: Optional[list[str]]
+    sentence_size: Optional[int]
+    callback_url: Optional[str]
+    callback_header: Optional[dict[str, str]]

+ 26 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/knowledge/document/document_list_params.py

@@ -0,0 +1,26 @@
+from __future__ import annotations
+
+from typing import Optional
+
+from typing_extensions import TypedDict
+
+
+class DocumentListParams(TypedDict, total=False):
+    """
+    文件查询参数类型定义
+
+    Attributes:
+        purpose (Optional[str]): 文件用途
+        knowledge_id (Optional[str]): 当文件用途为 retrieval 时,需要提供查询的知识库ID
+        page (Optional[int]): 页,默认1
+        limit (Optional[int]): 查询文件列表数,默认10
+        after (Optional[str]): 查询指定fileID之后的文件列表(当文件用途为 fine-tune 时需要)
+        order (Optional[str]): 排序规则,可选值['desc', 'asc'],默认desc(当文件用途为 fine-tune 时需要)
+    """
+
+    purpose: Optional[str]
+    knowledge_id: Optional[str]
+    page: Optional[int]
+    limit: Optional[int]
+    after: Optional[str]
+    order: Optional[str]

+ 11 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/knowledge/document/document_list_resp.py

@@ -0,0 +1,11 @@
+from __future__ import annotations
+
+from ....core import BaseModel
+from . import DocumentData
+
+__all__ = ["DocumentPage"]
+
+
+class DocumentPage(BaseModel):
+    list: list[DocumentData]
+    object: str

+ 21 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/knowledge/knowledge.py

@@ -0,0 +1,21 @@
+from typing import Optional
+
+from ...core import BaseModel
+
+__all__ = ["KnowledgeInfo"]
+
+
+class KnowledgeInfo(BaseModel):
+    id: Optional[str] = None
+    """知识库唯一 id"""
+    embedding_id: Optional[str] = (
+        None  # 知识库绑定的向量化模型 见模型列表 [内部服务开放接口文档](https://lslfd0slxc.feishu.cn/docx/YauWdbBiMopV0FxB7KncPWCEn8f#H15NduiQZo3ugmxnWQFcfAHpnQ4)
+    )
+    name: Optional[str] = None  # 知识库名称 100字限制
+    customer_identifier: Optional[str] = None  # 用户标识 长度32位以内
+    description: Optional[str] = None  # 知识库描述 500字限制
+    background: Optional[str] = None  # 背景颜色(给枚举)'blue', 'red', 'orange', 'purple', 'sky'
+    icon: Optional[str] = (
+        None  # 知识库图标(给枚举) question: 问号、book: 书籍、seal: 印章、wrench: 扳手、tag: 标签、horn: 喇叭、house: 房子  # noqa: E501
+    )
+    bucket_id: Optional[str] = None  # 桶id 限制32位

+ 30 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/knowledge/knowledge_create_params.py

@@ -0,0 +1,30 @@
+from __future__ import annotations
+
+from typing import Literal, Optional
+
+from typing_extensions import TypedDict
+
+__all__ = ["KnowledgeBaseParams"]
+
+
+class KnowledgeBaseParams(TypedDict):
+    """
+    知识库参数类型定义
+
+    Attributes:
+        embedding_id (int): 知识库绑定的向量化模型ID
+        name (str): 知识库名称,限制100字
+        customer_identifier (Optional[str]): 用户标识,长度32位以内
+        description (Optional[str]): 知识库描述,限制500字
+        background (Optional[Literal['blue', 'red', 'orange', 'purple', 'sky']]): 背景颜色
+        icon (Optional[Literal['question', 'book', 'seal', 'wrench', 'tag', 'horn', 'house']]): 知识库图标
+        bucket_id (Optional[str]): 桶ID,限制32位
+    """
+
+    embedding_id: int
+    name: str
+    customer_identifier: Optional[str]
+    description: Optional[str]
+    background: Optional[Literal["blue", "red", "orange", "purple", "sky"]] = None
+    icon: Optional[Literal["question", "book", "seal", "wrench", "tag", "horn", "house"]] = None
+    bucket_id: Optional[str]

+ 15 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/knowledge/knowledge_list_params.py

@@ -0,0 +1,15 @@
+from __future__ import annotations
+
+from typing_extensions import TypedDict
+
+__all__ = ["KnowledgeListParams"]
+
+
+class KnowledgeListParams(TypedDict, total=False):
+    page: int = 1
+    """ 页码,默认 1,第一页
+    """
+
+    size: int = 10
+    """每页数量 默认10
+    """

+ 11 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/knowledge/knowledge_list_resp.py

@@ -0,0 +1,11 @@
+from __future__ import annotations
+
+from ...core import BaseModel
+from . import KnowledgeInfo
+
+__all__ = ["KnowledgePage"]
+
+
+class KnowledgePage(BaseModel):
+    list: list[KnowledgeInfo]
+    object: str

+ 21 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/knowledge/knowledge_used.py

@@ -0,0 +1,21 @@
+from typing import Optional
+
+from ...core import BaseModel
+
+__all__ = ["KnowledgeStatistics", "KnowledgeUsed"]
+
+
+class KnowledgeStatistics(BaseModel):
+    """
+    使用量统计
+    """
+
+    word_num: Optional[int] = None
+    length: Optional[int] = None
+
+
+class KnowledgeUsed(BaseModel):
+    used: Optional[KnowledgeStatistics] = None
+    """已使用量"""
+    total: Optional[KnowledgeStatistics] = None
+    """知识库总量"""

+ 3 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/sensitive_word_check/__init__.py

@@ -0,0 +1,3 @@
+from .sensitive_word_check import SensitiveWordCheckRequest
+
+__all__ = ["SensitiveWordCheckRequest"]

+ 14 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/sensitive_word_check/sensitive_word_check.py

@@ -0,0 +1,14 @@
+from typing import Optional
+
+from typing_extensions import TypedDict
+
+
+class SensitiveWordCheckRequest(TypedDict, total=False):
+    type: Optional[str]
+    """敏感词类型,当前仅支持ALL"""
+    status: Optional[str]
+    """敏感词启用禁用状态
+        启用:ENABLE
+        禁用:DISABLE
+       备注:默认开启敏感词校验,如果要关闭敏感词校验,需联系商务获取对应权限,否则敏感词禁用不生效。
+    """

+ 9 - 0
api/core/model_runtime/model_providers/zhipuai/zhipuai_sdk/types/tools/__init__.py

@@ -0,0 +1,9 @@
+from .web_search import (
+    SearchIntent,
+    SearchRecommend,
+    SearchResult,
+    WebSearch,
+)
+from .web_search_chunk import WebSearchChunk
+
+__all__ = ["WebSearch", "SearchIntent", "SearchResult", "SearchRecommend", "WebSearchChunk"]

Alguns arquivos não foram mostrados porque muitos arquivos mudaram nesse diff