|
@@ -1,1759 +0,0 @@
|
|
|
-"""Wrapper around Qdrant vector database."""
|
|
|
-from __future__ import annotations
|
|
|
-
|
|
|
-import asyncio
|
|
|
-import functools
|
|
|
-import uuid
|
|
|
-import warnings
|
|
|
-from collections.abc import Callable, Generator, Iterable, Sequence
|
|
|
-from itertools import islice
|
|
|
-from operator import itemgetter
|
|
|
-from typing import TYPE_CHECKING, Any, Optional, Union
|
|
|
-
|
|
|
-import numpy as np
|
|
|
-from langchain.docstore.document import Document
|
|
|
-from langchain.embeddings.base import Embeddings
|
|
|
-from langchain.vectorstores import VectorStore
|
|
|
-from langchain.vectorstores.utils import maximal_marginal_relevance
|
|
|
-from qdrant_client.http.models import PayloadSchemaType, TextIndexParams, TextIndexType, TokenizerType
|
|
|
-
|
|
|
-if TYPE_CHECKING:
|
|
|
- from qdrant_client import grpc # noqa
|
|
|
- from qdrant_client.conversions import common_types
|
|
|
- from qdrant_client.http import models as rest
|
|
|
-
|
|
|
- DictFilter = dict[str, Union[str, int, bool, dict, list]]
|
|
|
- MetadataFilter = Union[DictFilter, common_types.Filter]
|
|
|
-
|
|
|
-
|
|
|
-class QdrantException(Exception):
|
|
|
- """Base class for all the Qdrant related exceptions"""
|
|
|
-
|
|
|
-
|
|
|
-def sync_call_fallback(method: Callable) -> Callable:
|
|
|
- """
|
|
|
- Decorator to call the synchronous method of the class if the async method is not
|
|
|
- implemented. This decorator might be only used for the methods that are defined
|
|
|
- as async in the class.
|
|
|
- """
|
|
|
-
|
|
|
- @functools.wraps(method)
|
|
|
- async def wrapper(self: Any, *args: Any, **kwargs: Any) -> Any:
|
|
|
- try:
|
|
|
- return await method(self, *args, **kwargs)
|
|
|
- except NotImplementedError:
|
|
|
- # If the async method is not implemented, call the synchronous method
|
|
|
- # by removing the first letter from the method name. For example,
|
|
|
- # if the async method is called ``aaad_texts``, the synchronous method
|
|
|
- # will be called ``aad_texts``.
|
|
|
- sync_method = functools.partial(
|
|
|
- getattr(self, method.__name__[1:]), *args, **kwargs
|
|
|
- )
|
|
|
- return await asyncio.get_event_loop().run_in_executor(None, sync_method)
|
|
|
-
|
|
|
- return wrapper
|
|
|
-
|
|
|
-
|
|
|
-class Qdrant(VectorStore):
|
|
|
- """Wrapper around Qdrant vector database.
|
|
|
-
|
|
|
- To use you should have the ``qdrant-client`` package installed.
|
|
|
-
|
|
|
- Example:
|
|
|
- .. code-block:: python
|
|
|
-
|
|
|
- from qdrant_client import QdrantClient
|
|
|
- from langchain import Qdrant
|
|
|
-
|
|
|
- client = QdrantClient()
|
|
|
- collection_name = "MyCollection"
|
|
|
- qdrant = Qdrant(client, collection_name, embedding_function)
|
|
|
- """
|
|
|
-
|
|
|
- CONTENT_KEY = "page_content"
|
|
|
- METADATA_KEY = "metadata"
|
|
|
- GROUP_KEY = "group_id"
|
|
|
- VECTOR_NAME = None
|
|
|
-
|
|
|
- def __init__(
|
|
|
- self,
|
|
|
- client: Any,
|
|
|
- collection_name: str,
|
|
|
- embeddings: Optional[Embeddings] = None,
|
|
|
- content_payload_key: str = CONTENT_KEY,
|
|
|
- metadata_payload_key: str = METADATA_KEY,
|
|
|
- group_payload_key: str = GROUP_KEY,
|
|
|
- group_id: str = None,
|
|
|
- distance_strategy: str = "COSINE",
|
|
|
- vector_name: Optional[str] = VECTOR_NAME,
|
|
|
- embedding_function: Optional[Callable] = None, # deprecated
|
|
|
- is_new_collection: bool = False
|
|
|
- ):
|
|
|
- """Initialize with necessary components."""
|
|
|
- try:
|
|
|
- import qdrant_client
|
|
|
- except ImportError:
|
|
|
- raise ValueError(
|
|
|
- "Could not import qdrant-client python package. "
|
|
|
- "Please install it with `pip install qdrant-client`."
|
|
|
- )
|
|
|
-
|
|
|
- if not isinstance(client, qdrant_client.QdrantClient):
|
|
|
- raise ValueError(
|
|
|
- f"client should be an instance of qdrant_client.QdrantClient, "
|
|
|
- f"got {type(client)}"
|
|
|
- )
|
|
|
-
|
|
|
- if embeddings is None and embedding_function is None:
|
|
|
- raise ValueError(
|
|
|
- "`embeddings` value can't be None. Pass `Embeddings` instance."
|
|
|
- )
|
|
|
-
|
|
|
- if embeddings is not None and embedding_function is not None:
|
|
|
- raise ValueError(
|
|
|
- "Both `embeddings` and `embedding_function` are passed. "
|
|
|
- "Use `embeddings` only."
|
|
|
- )
|
|
|
-
|
|
|
- self._embeddings = embeddings
|
|
|
- self._embeddings_function = embedding_function
|
|
|
- self.client: qdrant_client.QdrantClient = client
|
|
|
- self.collection_name = collection_name
|
|
|
- self.content_payload_key = content_payload_key or self.CONTENT_KEY
|
|
|
- self.metadata_payload_key = metadata_payload_key or self.METADATA_KEY
|
|
|
- self.group_payload_key = group_payload_key or self.GROUP_KEY
|
|
|
- self.vector_name = vector_name or self.VECTOR_NAME
|
|
|
- self.group_id = group_id
|
|
|
- self.is_new_collection= is_new_collection
|
|
|
-
|
|
|
- if embedding_function is not None:
|
|
|
- warnings.warn(
|
|
|
- "Using `embedding_function` is deprecated. "
|
|
|
- "Pass `Embeddings` instance to `embeddings` instead."
|
|
|
- )
|
|
|
-
|
|
|
- if not isinstance(embeddings, Embeddings):
|
|
|
- warnings.warn(
|
|
|
- "`embeddings` should be an instance of `Embeddings`."
|
|
|
- "Using `embeddings` as `embedding_function` which is deprecated"
|
|
|
- )
|
|
|
- self._embeddings_function = embeddings
|
|
|
- self._embeddings = None
|
|
|
-
|
|
|
- self.distance_strategy = distance_strategy.upper()
|
|
|
-
|
|
|
- @property
|
|
|
- def embeddings(self) -> Optional[Embeddings]:
|
|
|
- return self._embeddings
|
|
|
-
|
|
|
- def add_texts(
|
|
|
- self,
|
|
|
- texts: Iterable[str],
|
|
|
- metadatas: Optional[list[dict]] = None,
|
|
|
- ids: Optional[Sequence[str]] = None,
|
|
|
- batch_size: int = 64,
|
|
|
- **kwargs: Any,
|
|
|
- ) -> list[str]:
|
|
|
- """Run more texts through the embeddings and add to the vectorstore.
|
|
|
-
|
|
|
- Args:
|
|
|
- texts: Iterable of strings to add to the vectorstore.
|
|
|
- metadatas: Optional list of metadatas associated with the texts.
|
|
|
- ids:
|
|
|
- Optional list of ids to associate with the texts. Ids have to be
|
|
|
- uuid-like strings.
|
|
|
- batch_size:
|
|
|
- How many vectors upload per-request.
|
|
|
- Default: 64
|
|
|
- group_id:
|
|
|
- collection group
|
|
|
-
|
|
|
- Returns:
|
|
|
- List of ids from adding the texts into the vectorstore.
|
|
|
- """
|
|
|
- added_ids = []
|
|
|
- for batch_ids, points in self._generate_rest_batches(
|
|
|
- texts, metadatas, ids, batch_size
|
|
|
- ):
|
|
|
- self.client.upsert(
|
|
|
- collection_name=self.collection_name, points=points
|
|
|
- )
|
|
|
- added_ids.extend(batch_ids)
|
|
|
- # if is new collection, create payload index on group_id
|
|
|
- if self.is_new_collection:
|
|
|
- # create payload index
|
|
|
- self.client.create_payload_index(self.collection_name, self.group_payload_key,
|
|
|
- field_schema=PayloadSchemaType.KEYWORD,
|
|
|
- field_type=PayloadSchemaType.KEYWORD)
|
|
|
- # creat full text index
|
|
|
- text_index_params = TextIndexParams(
|
|
|
- type=TextIndexType.TEXT,
|
|
|
- tokenizer=TokenizerType.MULTILINGUAL,
|
|
|
- min_token_len=2,
|
|
|
- max_token_len=20,
|
|
|
- lowercase=True
|
|
|
- )
|
|
|
- self.client.create_payload_index(self.collection_name, self.content_payload_key,
|
|
|
- field_schema=text_index_params)
|
|
|
- return added_ids
|
|
|
-
|
|
|
- @sync_call_fallback
|
|
|
- async def aadd_texts(
|
|
|
- self,
|
|
|
- texts: Iterable[str],
|
|
|
- metadatas: Optional[list[dict]] = None,
|
|
|
- ids: Optional[Sequence[str]] = None,
|
|
|
- batch_size: int = 64,
|
|
|
- **kwargs: Any,
|
|
|
- ) -> list[str]:
|
|
|
- """Run more texts through the embeddings and add to the vectorstore.
|
|
|
-
|
|
|
- Args:
|
|
|
- texts: Iterable of strings to add to the vectorstore.
|
|
|
- metadatas: Optional list of metadatas associated with the texts.
|
|
|
- ids:
|
|
|
- Optional list of ids to associate with the texts. Ids have to be
|
|
|
- uuid-like strings.
|
|
|
- batch_size:
|
|
|
- How many vectors upload per-request.
|
|
|
- Default: 64
|
|
|
-
|
|
|
- Returns:
|
|
|
- List of ids from adding the texts into the vectorstore.
|
|
|
- """
|
|
|
- from qdrant_client import grpc # noqa
|
|
|
- from qdrant_client.conversions.conversion import RestToGrpc
|
|
|
-
|
|
|
- added_ids = []
|
|
|
- for batch_ids, points in self._generate_rest_batches(
|
|
|
- texts, metadatas, ids, batch_size
|
|
|
- ):
|
|
|
- await self.client.async_grpc_points.Upsert(
|
|
|
- grpc.UpsertPoints(
|
|
|
- collection_name=self.collection_name,
|
|
|
- points=[RestToGrpc.convert_point_struct(point) for point in points],
|
|
|
- )
|
|
|
- )
|
|
|
- added_ids.extend(batch_ids)
|
|
|
-
|
|
|
- return added_ids
|
|
|
-
|
|
|
- def similarity_search(
|
|
|
- self,
|
|
|
- query: str,
|
|
|
- k: int = 4,
|
|
|
- filter: Optional[MetadataFilter] = None,
|
|
|
- search_params: Optional[common_types.SearchParams] = None,
|
|
|
- offset: int = 0,
|
|
|
- score_threshold: Optional[float] = None,
|
|
|
- consistency: Optional[common_types.ReadConsistency] = None,
|
|
|
- **kwargs: Any,
|
|
|
- ) -> list[tuple[Document, float]]:
|
|
|
- """Return docs most similar to query.
|
|
|
-
|
|
|
- Args:
|
|
|
- query: Text to look up documents similar to.
|
|
|
- k: Number of Documents to return. Defaults to 4.
|
|
|
- filter: Filter by metadata. Defaults to None.
|
|
|
- search_params: Additional search params
|
|
|
- offset:
|
|
|
- Offset of the first result to return.
|
|
|
- May be used to paginate results.
|
|
|
- Note: large offset values may cause performance issues.
|
|
|
- score_threshold:
|
|
|
- Define a minimal score threshold for the result.
|
|
|
- If defined, less similar results will not be returned.
|
|
|
- Score of the returned result might be higher or smaller than the
|
|
|
- threshold depending on the Distance function used.
|
|
|
- E.g. for cosine similarity only higher scores will be returned.
|
|
|
- consistency:
|
|
|
- Read consistency of the search. Defines how many replicas should be
|
|
|
- queried before returning the result.
|
|
|
- Values:
|
|
|
- - int - number of replicas to query, values should present in all
|
|
|
- queried replicas
|
|
|
- - 'majority' - query all replicas, but return values present in the
|
|
|
- majority of replicas
|
|
|
- - 'quorum' - query the majority of replicas, return values present in
|
|
|
- all of them
|
|
|
- - 'all' - query all replicas, and return values present in all replicas
|
|
|
-
|
|
|
- Returns:
|
|
|
- List of Documents most similar to the query.
|
|
|
- """
|
|
|
- results = self.similarity_search_with_score(
|
|
|
- query,
|
|
|
- k,
|
|
|
- filter=filter,
|
|
|
- search_params=search_params,
|
|
|
- offset=offset,
|
|
|
- score_threshold=score_threshold,
|
|
|
- consistency=consistency,
|
|
|
- **kwargs,
|
|
|
- )
|
|
|
- return list(map(itemgetter(0), results))
|
|
|
-
|
|
|
- @sync_call_fallback
|
|
|
- async def asimilarity_search(
|
|
|
- self,
|
|
|
- query: str,
|
|
|
- k: int = 4,
|
|
|
- filter: Optional[MetadataFilter] = None,
|
|
|
- **kwargs: Any,
|
|
|
- ) -> list[Document]:
|
|
|
- """Return docs most similar to query.
|
|
|
- Args:
|
|
|
- query: Text to look up documents similar to.
|
|
|
- k: Number of Documents to return. Defaults to 4.
|
|
|
- filter: Filter by metadata. Defaults to None.
|
|
|
- Returns:
|
|
|
- List of Documents most similar to the query.
|
|
|
- """
|
|
|
- results = await self.asimilarity_search_with_score(query, k, filter, **kwargs)
|
|
|
- return list(map(itemgetter(0), results))
|
|
|
-
|
|
|
- def similarity_search_with_score(
|
|
|
- self,
|
|
|
- query: str,
|
|
|
- k: int = 4,
|
|
|
- filter: Optional[MetadataFilter] = None,
|
|
|
- search_params: Optional[common_types.SearchParams] = None,
|
|
|
- offset: int = 0,
|
|
|
- score_threshold: Optional[float] = None,
|
|
|
- consistency: Optional[common_types.ReadConsistency] = None,
|
|
|
- **kwargs: Any,
|
|
|
- ) -> list[tuple[Document, float]]:
|
|
|
- """Return docs most similar to query.
|
|
|
-
|
|
|
- Args:
|
|
|
- query: Text to look up documents similar to.
|
|
|
- k: Number of Documents to return. Defaults to 4.
|
|
|
- filter: Filter by metadata. Defaults to None.
|
|
|
- search_params: Additional search params
|
|
|
- offset:
|
|
|
- Offset of the first result to return.
|
|
|
- May be used to paginate results.
|
|
|
- Note: large offset values may cause performance issues.
|
|
|
- score_threshold:
|
|
|
- Define a minimal score threshold for the result.
|
|
|
- If defined, less similar results will not be returned.
|
|
|
- Score of the returned result might be higher or smaller than the
|
|
|
- threshold depending on the Distance function used.
|
|
|
- E.g. for cosine similarity only higher scores will be returned.
|
|
|
- consistency:
|
|
|
- Read consistency of the search. Defines how many replicas should be
|
|
|
- queried before returning the result.
|
|
|
- Values:
|
|
|
- - int - number of replicas to query, values should present in all
|
|
|
- queried replicas
|
|
|
- - 'majority' - query all replicas, but return values present in the
|
|
|
- majority of replicas
|
|
|
- - 'quorum' - query the majority of replicas, return values present in
|
|
|
- all of them
|
|
|
- - 'all' - query all replicas, and return values present in all replicas
|
|
|
-
|
|
|
- Returns:
|
|
|
- List of documents most similar to the query text and distance for each.
|
|
|
- """
|
|
|
- return self.similarity_search_with_score_by_vector(
|
|
|
- self._embed_query(query),
|
|
|
- k,
|
|
|
- filter=filter,
|
|
|
- search_params=search_params,
|
|
|
- offset=offset,
|
|
|
- score_threshold=score_threshold,
|
|
|
- consistency=consistency,
|
|
|
- **kwargs,
|
|
|
- )
|
|
|
-
|
|
|
- @sync_call_fallback
|
|
|
- async def asimilarity_search_with_score(
|
|
|
- self,
|
|
|
- query: str,
|
|
|
- k: int = 4,
|
|
|
- filter: Optional[MetadataFilter] = None,
|
|
|
- search_params: Optional[common_types.SearchParams] = None,
|
|
|
- offset: int = 0,
|
|
|
- score_threshold: Optional[float] = None,
|
|
|
- consistency: Optional[common_types.ReadConsistency] = None,
|
|
|
- **kwargs: Any,
|
|
|
- ) -> list[tuple[Document, float]]:
|
|
|
- """Return docs most similar to query.
|
|
|
-
|
|
|
- Args:
|
|
|
- query: Text to look up documents similar to.
|
|
|
- k: Number of Documents to return. Defaults to 4.
|
|
|
- filter: Filter by metadata. Defaults to None.
|
|
|
- search_params: Additional search params
|
|
|
- offset:
|
|
|
- Offset of the first result to return.
|
|
|
- May be used to paginate results.
|
|
|
- Note: large offset values may cause performance issues.
|
|
|
- score_threshold:
|
|
|
- Define a minimal score threshold for the result.
|
|
|
- If defined, less similar results will not be returned.
|
|
|
- Score of the returned result might be higher or smaller than the
|
|
|
- threshold depending on the Distance function used.
|
|
|
- E.g. for cosine similarity only higher scores will be returned.
|
|
|
- consistency:
|
|
|
- Read consistency of the search. Defines how many replicas should be
|
|
|
- queried before returning the result.
|
|
|
- Values:
|
|
|
- - int - number of replicas to query, values should present in all
|
|
|
- queried replicas
|
|
|
- - 'majority' - query all replicas, but return values present in the
|
|
|
- majority of replicas
|
|
|
- - 'quorum' - query the majority of replicas, return values present in
|
|
|
- all of them
|
|
|
- - 'all' - query all replicas, and return values present in all replicas
|
|
|
-
|
|
|
- Returns:
|
|
|
- List of documents most similar to the query text and distance for each.
|
|
|
- """
|
|
|
- return await self.asimilarity_search_with_score_by_vector(
|
|
|
- self._embed_query(query),
|
|
|
- k,
|
|
|
- filter=filter,
|
|
|
- search_params=search_params,
|
|
|
- offset=offset,
|
|
|
- score_threshold=score_threshold,
|
|
|
- consistency=consistency,
|
|
|
- **kwargs,
|
|
|
- )
|
|
|
-
|
|
|
- def similarity_search_by_vector(
|
|
|
- self,
|
|
|
- embedding: list[float],
|
|
|
- k: int = 4,
|
|
|
- filter: Optional[MetadataFilter] = None,
|
|
|
- search_params: Optional[common_types.SearchParams] = None,
|
|
|
- offset: int = 0,
|
|
|
- score_threshold: Optional[float] = None,
|
|
|
- consistency: Optional[common_types.ReadConsistency] = None,
|
|
|
- **kwargs: Any,
|
|
|
- ) -> list[Document]:
|
|
|
- """Return docs most similar to embedding vector.
|
|
|
-
|
|
|
- Args:
|
|
|
- embedding: Embedding vector to look up documents similar to.
|
|
|
- k: Number of Documents to return. Defaults to 4.
|
|
|
- filter: Filter by metadata. Defaults to None.
|
|
|
- search_params: Additional search params
|
|
|
- offset:
|
|
|
- Offset of the first result to return.
|
|
|
- May be used to paginate results.
|
|
|
- Note: large offset values may cause performance issues.
|
|
|
- score_threshold:
|
|
|
- Define a minimal score threshold for the result.
|
|
|
- If defined, less similar results will not be returned.
|
|
|
- Score of the returned result might be higher or smaller than the
|
|
|
- threshold depending on the Distance function used.
|
|
|
- E.g. for cosine similarity only higher scores will be returned.
|
|
|
- consistency:
|
|
|
- Read consistency of the search. Defines how many replicas should be
|
|
|
- queried before returning the result.
|
|
|
- Values:
|
|
|
- - int - number of replicas to query, values should present in all
|
|
|
- queried replicas
|
|
|
- - 'majority' - query all replicas, but return values present in the
|
|
|
- majority of replicas
|
|
|
- - 'quorum' - query the majority of replicas, return values present in
|
|
|
- all of them
|
|
|
- - 'all' - query all replicas, and return values present in all replicas
|
|
|
-
|
|
|
- Returns:
|
|
|
- List of Documents most similar to the query.
|
|
|
- """
|
|
|
- results = self.similarity_search_with_score_by_vector(
|
|
|
- embedding,
|
|
|
- k,
|
|
|
- filter=filter,
|
|
|
- search_params=search_params,
|
|
|
- offset=offset,
|
|
|
- score_threshold=score_threshold,
|
|
|
- consistency=consistency,
|
|
|
- **kwargs,
|
|
|
- )
|
|
|
- return list(map(itemgetter(0), results))
|
|
|
-
|
|
|
- @sync_call_fallback
|
|
|
- async def asimilarity_search_by_vector(
|
|
|
- self,
|
|
|
- embedding: list[float],
|
|
|
- k: int = 4,
|
|
|
- filter: Optional[MetadataFilter] = None,
|
|
|
- search_params: Optional[common_types.SearchParams] = None,
|
|
|
- offset: int = 0,
|
|
|
- score_threshold: Optional[float] = None,
|
|
|
- consistency: Optional[common_types.ReadConsistency] = None,
|
|
|
- **kwargs: Any,
|
|
|
- ) -> list[Document]:
|
|
|
- """Return docs most similar to embedding vector.
|
|
|
-
|
|
|
- Args:
|
|
|
- embedding: Embedding vector to look up documents similar to.
|
|
|
- k: Number of Documents to return. Defaults to 4.
|
|
|
- filter: Filter by metadata. Defaults to None.
|
|
|
- search_params: Additional search params
|
|
|
- offset:
|
|
|
- Offset of the first result to return.
|
|
|
- May be used to paginate results.
|
|
|
- Note: large offset values may cause performance issues.
|
|
|
- score_threshold:
|
|
|
- Define a minimal score threshold for the result.
|
|
|
- If defined, less similar results will not be returned.
|
|
|
- Score of the returned result might be higher or smaller than the
|
|
|
- threshold depending on the Distance function used.
|
|
|
- E.g. for cosine similarity only higher scores will be returned.
|
|
|
- consistency:
|
|
|
- Read consistency of the search. Defines how many replicas should be
|
|
|
- queried before returning the result.
|
|
|
- Values:
|
|
|
- - int - number of replicas to query, values should present in all
|
|
|
- queried replicas
|
|
|
- - 'majority' - query all replicas, but return values present in the
|
|
|
- majority of replicas
|
|
|
- - 'quorum' - query the majority of replicas, return values present in
|
|
|
- all of them
|
|
|
- - 'all' - query all replicas, and return values present in all replicas
|
|
|
-
|
|
|
- Returns:
|
|
|
- List of Documents most similar to the query.
|
|
|
- """
|
|
|
- results = await self.asimilarity_search_with_score_by_vector(
|
|
|
- embedding,
|
|
|
- k,
|
|
|
- filter=filter,
|
|
|
- search_params=search_params,
|
|
|
- offset=offset,
|
|
|
- score_threshold=score_threshold,
|
|
|
- consistency=consistency,
|
|
|
- **kwargs,
|
|
|
- )
|
|
|
- return list(map(itemgetter(0), results))
|
|
|
-
|
|
|
- def similarity_search_with_score_by_vector(
|
|
|
- self,
|
|
|
- embedding: list[float],
|
|
|
- k: int = 4,
|
|
|
- filter: Optional[MetadataFilter] = None,
|
|
|
- search_params: Optional[common_types.SearchParams] = None,
|
|
|
- offset: int = 0,
|
|
|
- score_threshold: Optional[float] = None,
|
|
|
- consistency: Optional[common_types.ReadConsistency] = None,
|
|
|
- **kwargs: Any,
|
|
|
- ) -> list[tuple[Document, float]]:
|
|
|
- """Return docs most similar to embedding vector.
|
|
|
-
|
|
|
- Args:
|
|
|
- embedding: Embedding vector to look up documents similar to.
|
|
|
- k: Number of Documents to return. Defaults to 4.
|
|
|
- filter: Filter by metadata. Defaults to None.
|
|
|
- search_params: Additional search params
|
|
|
- offset:
|
|
|
- Offset of the first result to return.
|
|
|
- May be used to paginate results.
|
|
|
- Note: large offset values may cause performance issues.
|
|
|
- score_threshold:
|
|
|
- Define a minimal score threshold for the result.
|
|
|
- If defined, less similar results will not be returned.
|
|
|
- Score of the returned result might be higher or smaller than the
|
|
|
- threshold depending on the Distance function used.
|
|
|
- E.g. for cosine similarity only higher scores will be returned.
|
|
|
- consistency:
|
|
|
- Read consistency of the search. Defines how many replicas should be
|
|
|
- queried before returning the result.
|
|
|
- Values:
|
|
|
- - int - number of replicas to query, values should present in all
|
|
|
- queried replicas
|
|
|
- - 'majority' - query all replicas, but return values present in the
|
|
|
- majority of replicas
|
|
|
- - 'quorum' - query the majority of replicas, return values present in
|
|
|
- all of them
|
|
|
- - 'all' - query all replicas, and return values present in all replicas
|
|
|
-
|
|
|
- Returns:
|
|
|
- List of documents most similar to the query text and distance for each.
|
|
|
- """
|
|
|
- if filter is not None and isinstance(filter, dict):
|
|
|
- warnings.warn(
|
|
|
- "Using dict as a `filter` is deprecated. Please use qdrant-client "
|
|
|
- "filters directly: "
|
|
|
- "https://qdrant.tech/documentation/concepts/filtering/",
|
|
|
- DeprecationWarning,
|
|
|
- )
|
|
|
- qdrant_filter = self._qdrant_filter_from_dict(filter)
|
|
|
- else:
|
|
|
- qdrant_filter = filter
|
|
|
-
|
|
|
- query_vector = embedding
|
|
|
- if self.vector_name is not None:
|
|
|
- query_vector = (self.vector_name, embedding) # type: ignore[assignment]
|
|
|
-
|
|
|
- results = self.client.search(
|
|
|
- collection_name=self.collection_name,
|
|
|
- query_vector=query_vector,
|
|
|
- query_filter=qdrant_filter,
|
|
|
- search_params=search_params,
|
|
|
- limit=k,
|
|
|
- offset=offset,
|
|
|
- with_payload=True,
|
|
|
- with_vectors=True,
|
|
|
- score_threshold=score_threshold,
|
|
|
- consistency=consistency,
|
|
|
- **kwargs,
|
|
|
- )
|
|
|
- return [
|
|
|
- (
|
|
|
- self._document_from_scored_point(
|
|
|
- result, self.content_payload_key, self.metadata_payload_key
|
|
|
- ),
|
|
|
- result.score,
|
|
|
- )
|
|
|
- for result in results
|
|
|
- ]
|
|
|
-
|
|
|
- def similarity_search_by_bm25(
|
|
|
- self,
|
|
|
- filter: Optional[MetadataFilter] = None,
|
|
|
- k: int = 4
|
|
|
- ) -> list[Document]:
|
|
|
- """Return docs most similar by bm25.
|
|
|
-
|
|
|
- Args:
|
|
|
- embedding: Embedding vector to look up documents similar to.
|
|
|
- k: Number of Documents to return. Defaults to 4.
|
|
|
- filter: Filter by metadata. Defaults to None.
|
|
|
- search_params: Additional search params
|
|
|
- Returns:
|
|
|
- List of documents most similar to the query text and distance for each.
|
|
|
- """
|
|
|
- response = self.client.scroll(
|
|
|
- collection_name=self.collection_name,
|
|
|
- scroll_filter=filter,
|
|
|
- limit=k,
|
|
|
- with_payload=True,
|
|
|
- with_vectors=True
|
|
|
-
|
|
|
- )
|
|
|
- results = response[0]
|
|
|
- documents = []
|
|
|
- for result in results:
|
|
|
- if result:
|
|
|
- documents.append(self._document_from_scored_point(
|
|
|
- result, self.content_payload_key, self.metadata_payload_key
|
|
|
- ))
|
|
|
-
|
|
|
- return documents
|
|
|
-
|
|
|
- @sync_call_fallback
|
|
|
- async def asimilarity_search_with_score_by_vector(
|
|
|
- self,
|
|
|
- embedding: list[float],
|
|
|
- k: int = 4,
|
|
|
- filter: Optional[MetadataFilter] = None,
|
|
|
- search_params: Optional[common_types.SearchParams] = None,
|
|
|
- offset: int = 0,
|
|
|
- score_threshold: Optional[float] = None,
|
|
|
- consistency: Optional[common_types.ReadConsistency] = None,
|
|
|
- **kwargs: Any,
|
|
|
- ) -> list[tuple[Document, float]]:
|
|
|
- """Return docs most similar to embedding vector.
|
|
|
-
|
|
|
- Args:
|
|
|
- embedding: Embedding vector to look up documents similar to.
|
|
|
- k: Number of Documents to return. Defaults to 4.
|
|
|
- filter: Filter by metadata. Defaults to None.
|
|
|
- search_params: Additional search params
|
|
|
- offset:
|
|
|
- Offset of the first result to return.
|
|
|
- May be used to paginate results.
|
|
|
- Note: large offset values may cause performance issues.
|
|
|
- score_threshold:
|
|
|
- Define a minimal score threshold for the result.
|
|
|
- If defined, less similar results will not be returned.
|
|
|
- Score of the returned result might be higher or smaller than the
|
|
|
- threshold depending on the Distance function used.
|
|
|
- E.g. for cosine similarity only higher scores will be returned.
|
|
|
- consistency:
|
|
|
- Read consistency of the search. Defines how many replicas should be
|
|
|
- queried before returning the result.
|
|
|
- Values:
|
|
|
- - int - number of replicas to query, values should present in all
|
|
|
- queried replicas
|
|
|
- - 'majority' - query all replicas, but return values present in the
|
|
|
- majority of replicas
|
|
|
- - 'quorum' - query the majority of replicas, return values present in
|
|
|
- all of them
|
|
|
- - 'all' - query all replicas, and return values present in all replicas
|
|
|
-
|
|
|
- Returns:
|
|
|
- List of documents most similar to the query text and distance for each.
|
|
|
- """
|
|
|
- from qdrant_client import grpc # noqa
|
|
|
- from qdrant_client.conversions.conversion import RestToGrpc
|
|
|
- from qdrant_client.http import models as rest
|
|
|
-
|
|
|
- if filter is not None and isinstance(filter, dict):
|
|
|
- warnings.warn(
|
|
|
- "Using dict as a `filter` is deprecated. Please use qdrant-client "
|
|
|
- "filters directly: "
|
|
|
- "https://qdrant.tech/documentation/concepts/filtering/",
|
|
|
- DeprecationWarning,
|
|
|
- )
|
|
|
- qdrant_filter = self._qdrant_filter_from_dict(filter)
|
|
|
- else:
|
|
|
- qdrant_filter = filter
|
|
|
-
|
|
|
- if qdrant_filter is not None and isinstance(qdrant_filter, rest.Filter):
|
|
|
- qdrant_filter = RestToGrpc.convert_filter(qdrant_filter)
|
|
|
-
|
|
|
- response = await self.client.async_grpc_points.Search(
|
|
|
- grpc.SearchPoints(
|
|
|
- collection_name=self.collection_name,
|
|
|
- vector_name=self.vector_name,
|
|
|
- vector=embedding,
|
|
|
- filter=qdrant_filter,
|
|
|
- params=search_params,
|
|
|
- limit=k,
|
|
|
- offset=offset,
|
|
|
- with_payload=grpc.WithPayloadSelector(enable=True),
|
|
|
- with_vectors=grpc.WithVectorsSelector(enable=False),
|
|
|
- score_threshold=score_threshold,
|
|
|
- read_consistency=consistency,
|
|
|
- **kwargs,
|
|
|
- )
|
|
|
- )
|
|
|
-
|
|
|
- return [
|
|
|
- (
|
|
|
- self._document_from_scored_point_grpc(
|
|
|
- result, self.content_payload_key, self.metadata_payload_key
|
|
|
- ),
|
|
|
- result.score,
|
|
|
- )
|
|
|
- for result in response.result
|
|
|
- ]
|
|
|
-
|
|
|
- def max_marginal_relevance_search(
|
|
|
- self,
|
|
|
- query: str,
|
|
|
- k: int = 4,
|
|
|
- fetch_k: int = 20,
|
|
|
- lambda_mult: float = 0.5,
|
|
|
- **kwargs: Any,
|
|
|
- ) -> list[Document]:
|
|
|
- """Return docs selected using the maximal marginal relevance.
|
|
|
-
|
|
|
- Maximal marginal relevance optimizes for similarity to query AND diversity
|
|
|
- among selected documents.
|
|
|
-
|
|
|
- Args:
|
|
|
- query: Text to look up documents similar to.
|
|
|
- k: Number of Documents to return. Defaults to 4.
|
|
|
- fetch_k: Number of Documents to fetch to pass to MMR algorithm.
|
|
|
- Defaults to 20.
|
|
|
- lambda_mult: Number between 0 and 1 that determines the degree
|
|
|
- of diversity among the results with 0 corresponding
|
|
|
- to maximum diversity and 1 to minimum diversity.
|
|
|
- Defaults to 0.5.
|
|
|
- Returns:
|
|
|
- List of Documents selected by maximal marginal relevance.
|
|
|
- """
|
|
|
- query_embedding = self._embed_query(query)
|
|
|
- return self.max_marginal_relevance_search_by_vector(
|
|
|
- query_embedding, k, fetch_k, lambda_mult, **kwargs
|
|
|
- )
|
|
|
-
|
|
|
- @sync_call_fallback
|
|
|
- async def amax_marginal_relevance_search(
|
|
|
- self,
|
|
|
- query: str,
|
|
|
- k: int = 4,
|
|
|
- fetch_k: int = 20,
|
|
|
- lambda_mult: float = 0.5,
|
|
|
- **kwargs: Any,
|
|
|
- ) -> list[Document]:
|
|
|
- """Return docs selected using the maximal marginal relevance.
|
|
|
-
|
|
|
- Maximal marginal relevance optimizes for similarity to query AND diversity
|
|
|
- among selected documents.
|
|
|
-
|
|
|
- Args:
|
|
|
- query: Text to look up documents similar to.
|
|
|
- k: Number of Documents to return. Defaults to 4.
|
|
|
- fetch_k: Number of Documents to fetch to pass to MMR algorithm.
|
|
|
- Defaults to 20.
|
|
|
- lambda_mult: Number between 0 and 1 that determines the degree
|
|
|
- of diversity among the results with 0 corresponding
|
|
|
- to maximum diversity and 1 to minimum diversity.
|
|
|
- Defaults to 0.5.
|
|
|
- Returns:
|
|
|
- List of Documents selected by maximal marginal relevance.
|
|
|
- """
|
|
|
- query_embedding = self._embed_query(query)
|
|
|
- return await self.amax_marginal_relevance_search_by_vector(
|
|
|
- query_embedding, k, fetch_k, lambda_mult, **kwargs
|
|
|
- )
|
|
|
-
|
|
|
- def max_marginal_relevance_search_by_vector(
|
|
|
- self,
|
|
|
- embedding: list[float],
|
|
|
- k: int = 4,
|
|
|
- fetch_k: int = 20,
|
|
|
- lambda_mult: float = 0.5,
|
|
|
- **kwargs: Any,
|
|
|
- ) -> list[Document]:
|
|
|
- """Return docs selected using the maximal marginal relevance.
|
|
|
-
|
|
|
- Maximal marginal relevance optimizes for similarity to query AND diversity
|
|
|
- among selected documents.
|
|
|
-
|
|
|
- Args:
|
|
|
- embedding: Embedding to look up documents similar to.
|
|
|
- k: Number of Documents to return. Defaults to 4.
|
|
|
- fetch_k: Number of Documents to fetch to pass to MMR algorithm.
|
|
|
- lambda_mult: Number between 0 and 1 that determines the degree
|
|
|
- of diversity among the results with 0 corresponding
|
|
|
- to maximum diversity and 1 to minimum diversity.
|
|
|
- Defaults to 0.5.
|
|
|
- Returns:
|
|
|
- List of Documents selected by maximal marginal relevance.
|
|
|
- """
|
|
|
- results = self.max_marginal_relevance_search_with_score_by_vector(
|
|
|
- embedding=embedding, k=k, fetch_k=fetch_k, lambda_mult=lambda_mult, **kwargs
|
|
|
- )
|
|
|
- return list(map(itemgetter(0), results))
|
|
|
-
|
|
|
- @sync_call_fallback
|
|
|
- async def amax_marginal_relevance_search_by_vector(
|
|
|
- self,
|
|
|
- embedding: list[float],
|
|
|
- k: int = 4,
|
|
|
- fetch_k: int = 20,
|
|
|
- lambda_mult: float = 0.5,
|
|
|
- **kwargs: Any,
|
|
|
- ) -> list[Document]:
|
|
|
- """Return docs selected using the maximal marginal relevance.
|
|
|
- Maximal marginal relevance optimizes for similarity to query AND diversity
|
|
|
- among selected documents.
|
|
|
- Args:
|
|
|
- query: Text to look up documents similar to.
|
|
|
- k: Number of Documents to return. Defaults to 4.
|
|
|
- fetch_k: Number of Documents to fetch to pass to MMR algorithm.
|
|
|
- Defaults to 20.
|
|
|
- lambda_mult: Number between 0 and 1 that determines the degree
|
|
|
- of diversity among the results with 0 corresponding
|
|
|
- to maximum diversity and 1 to minimum diversity.
|
|
|
- Defaults to 0.5.
|
|
|
- Returns:
|
|
|
- List of Documents selected by maximal marginal relevance and distance for
|
|
|
- each.
|
|
|
- """
|
|
|
- results = await self.amax_marginal_relevance_search_with_score_by_vector(
|
|
|
- embedding, k, fetch_k, lambda_mult, **kwargs
|
|
|
- )
|
|
|
- return list(map(itemgetter(0), results))
|
|
|
-
|
|
|
- def max_marginal_relevance_search_with_score_by_vector(
|
|
|
- self,
|
|
|
- embedding: list[float],
|
|
|
- k: int = 4,
|
|
|
- fetch_k: int = 20,
|
|
|
- lambda_mult: float = 0.5,
|
|
|
- **kwargs: Any,
|
|
|
- ) -> list[tuple[Document, float]]:
|
|
|
- """Return docs selected using the maximal marginal relevance.
|
|
|
- Maximal marginal relevance optimizes for similarity to query AND diversity
|
|
|
- among selected documents.
|
|
|
- Args:
|
|
|
- query: Text to look up documents similar to.
|
|
|
- k: Number of Documents to return. Defaults to 4.
|
|
|
- fetch_k: Number of Documents to fetch to pass to MMR algorithm.
|
|
|
- Defaults to 20.
|
|
|
- lambda_mult: Number between 0 and 1 that determines the degree
|
|
|
- of diversity among the results with 0 corresponding
|
|
|
- to maximum diversity and 1 to minimum diversity.
|
|
|
- Defaults to 0.5.
|
|
|
- Returns:
|
|
|
- List of Documents selected by maximal marginal relevance and distance for
|
|
|
- each.
|
|
|
- """
|
|
|
- query_vector = embedding
|
|
|
- if self.vector_name is not None:
|
|
|
- query_vector = (self.vector_name, query_vector) # type: ignore[assignment]
|
|
|
-
|
|
|
- results = self.client.search(
|
|
|
- collection_name=self.collection_name,
|
|
|
- query_vector=query_vector,
|
|
|
- with_payload=True,
|
|
|
- with_vectors=True,
|
|
|
- limit=fetch_k,
|
|
|
- )
|
|
|
- embeddings = [
|
|
|
- result.vector.get(self.vector_name) # type: ignore[index, union-attr]
|
|
|
- if self.vector_name is not None
|
|
|
- else result.vector
|
|
|
- for result in results
|
|
|
- ]
|
|
|
- mmr_selected = maximal_marginal_relevance(
|
|
|
- np.array(embedding), embeddings, k=k, lambda_mult=lambda_mult
|
|
|
- )
|
|
|
- return [
|
|
|
- (
|
|
|
- self._document_from_scored_point(
|
|
|
- results[i], self.content_payload_key, self.metadata_payload_key
|
|
|
- ),
|
|
|
- results[i].score,
|
|
|
- )
|
|
|
- for i in mmr_selected
|
|
|
- ]
|
|
|
-
|
|
|
- @sync_call_fallback
|
|
|
- async def amax_marginal_relevance_search_with_score_by_vector(
|
|
|
- self,
|
|
|
- embedding: list[float],
|
|
|
- k: int = 4,
|
|
|
- fetch_k: int = 20,
|
|
|
- lambda_mult: float = 0.5,
|
|
|
- **kwargs: Any,
|
|
|
- ) -> list[tuple[Document, float]]:
|
|
|
- """Return docs selected using the maximal marginal relevance.
|
|
|
- Maximal marginal relevance optimizes for similarity to query AND diversity
|
|
|
- among selected documents.
|
|
|
- Args:
|
|
|
- query: Text to look up documents similar to.
|
|
|
- k: Number of Documents to return. Defaults to 4.
|
|
|
- fetch_k: Number of Documents to fetch to pass to MMR algorithm.
|
|
|
- Defaults to 20.
|
|
|
- lambda_mult: Number between 0 and 1 that determines the degree
|
|
|
- of diversity among the results with 0 corresponding
|
|
|
- to maximum diversity and 1 to minimum diversity.
|
|
|
- Defaults to 0.5.
|
|
|
- Returns:
|
|
|
- List of Documents selected by maximal marginal relevance and distance for
|
|
|
- each.
|
|
|
- """
|
|
|
- from qdrant_client import grpc # noqa
|
|
|
- from qdrant_client.conversions.conversion import GrpcToRest
|
|
|
-
|
|
|
- response = await self.client.async_grpc_points.Search(
|
|
|
- grpc.SearchPoints(
|
|
|
- collection_name=self.collection_name,
|
|
|
- vector_name=self.vector_name,
|
|
|
- vector=embedding,
|
|
|
- with_payload=grpc.WithPayloadSelector(enable=True),
|
|
|
- with_vectors=grpc.WithVectorsSelector(enable=True),
|
|
|
- limit=fetch_k,
|
|
|
- )
|
|
|
- )
|
|
|
- results = [
|
|
|
- GrpcToRest.convert_vectors(result.vectors) for result in response.result
|
|
|
- ]
|
|
|
- embeddings: list[list[float]] = [
|
|
|
- result.get(self.vector_name) # type: ignore
|
|
|
- if isinstance(result, dict)
|
|
|
- else result
|
|
|
- for result in results
|
|
|
- ]
|
|
|
- mmr_selected: list[int] = maximal_marginal_relevance(
|
|
|
- np.array(embedding),
|
|
|
- embeddings,
|
|
|
- k=k,
|
|
|
- lambda_mult=lambda_mult,
|
|
|
- )
|
|
|
- return [
|
|
|
- (
|
|
|
- self._document_from_scored_point_grpc(
|
|
|
- response.result[i],
|
|
|
- self.content_payload_key,
|
|
|
- self.metadata_payload_key,
|
|
|
- ),
|
|
|
- response.result[i].score,
|
|
|
- )
|
|
|
- for i in mmr_selected
|
|
|
- ]
|
|
|
-
|
|
|
- def delete(self, ids: Optional[list[str]] = None, **kwargs: Any) -> Optional[bool]:
|
|
|
- """Delete by vector ID or other criteria.
|
|
|
-
|
|
|
- Args:
|
|
|
- ids: List of ids to delete.
|
|
|
- **kwargs: Other keyword arguments that subclasses might use.
|
|
|
-
|
|
|
- Returns:
|
|
|
- Optional[bool]: True if deletion is successful,
|
|
|
- False otherwise, None if not implemented.
|
|
|
- """
|
|
|
- from qdrant_client.http import models as rest
|
|
|
-
|
|
|
- result = self.client.delete(
|
|
|
- collection_name=self.collection_name,
|
|
|
- points_selector=ids,
|
|
|
- )
|
|
|
- return result.status == rest.UpdateStatus.COMPLETED
|
|
|
-
|
|
|
- @classmethod
|
|
|
- def from_texts(
|
|
|
- cls: type[Qdrant],
|
|
|
- texts: list[str],
|
|
|
- embedding: Embeddings,
|
|
|
- metadatas: Optional[list[dict]] = None,
|
|
|
- ids: Optional[Sequence[str]] = None,
|
|
|
- location: Optional[str] = None,
|
|
|
- url: Optional[str] = None,
|
|
|
- port: Optional[int] = 6333,
|
|
|
- grpc_port: int = 6334,
|
|
|
- prefer_grpc: bool = False,
|
|
|
- https: Optional[bool] = None,
|
|
|
- api_key: Optional[str] = None,
|
|
|
- prefix: Optional[str] = None,
|
|
|
- timeout: Optional[float] = None,
|
|
|
- host: Optional[str] = None,
|
|
|
- path: Optional[str] = None,
|
|
|
- collection_name: Optional[str] = None,
|
|
|
- distance_func: str = "Cosine",
|
|
|
- content_payload_key: str = CONTENT_KEY,
|
|
|
- metadata_payload_key: str = METADATA_KEY,
|
|
|
- group_payload_key: str = GROUP_KEY,
|
|
|
- group_id: str = None,
|
|
|
- vector_name: Optional[str] = VECTOR_NAME,
|
|
|
- batch_size: int = 64,
|
|
|
- shard_number: Optional[int] = None,
|
|
|
- replication_factor: Optional[int] = None,
|
|
|
- write_consistency_factor: Optional[int] = None,
|
|
|
- on_disk_payload: Optional[bool] = None,
|
|
|
- hnsw_config: Optional[common_types.HnswConfigDiff] = None,
|
|
|
- optimizers_config: Optional[common_types.OptimizersConfigDiff] = None,
|
|
|
- wal_config: Optional[common_types.WalConfigDiff] = None,
|
|
|
- quantization_config: Optional[common_types.QuantizationConfig] = None,
|
|
|
- init_from: Optional[common_types.InitFrom] = None,
|
|
|
- force_recreate: bool = False,
|
|
|
- **kwargs: Any,
|
|
|
- ) -> Qdrant:
|
|
|
- """Construct Qdrant wrapper from a list of texts.
|
|
|
-
|
|
|
- Args:
|
|
|
- texts: A list of texts to be indexed in Qdrant.
|
|
|
- embedding: A subclass of `Embeddings`, responsible for text vectorization.
|
|
|
- metadatas:
|
|
|
- An optional list of metadata. If provided it has to be of the same
|
|
|
- length as a list of texts.
|
|
|
- ids:
|
|
|
- Optional list of ids to associate with the texts. Ids have to be
|
|
|
- uuid-like strings.
|
|
|
- location:
|
|
|
- If `:memory:` - use in-memory Qdrant instance.
|
|
|
- If `str` - use it as a `url` parameter.
|
|
|
- If `None` - fallback to relying on `host` and `port` parameters.
|
|
|
- url: either host or str of "Optional[scheme], host, Optional[port],
|
|
|
- Optional[prefix]". Default: `None`
|
|
|
- port: Port of the REST API interface. Default: 6333
|
|
|
- grpc_port: Port of the gRPC interface. Default: 6334
|
|
|
- prefer_grpc:
|
|
|
- If true - use gPRC interface whenever possible in custom methods.
|
|
|
- Default: False
|
|
|
- https: If true - use HTTPS(SSL) protocol. Default: None
|
|
|
- api_key: API key for authentication in Qdrant Cloud. Default: None
|
|
|
- prefix:
|
|
|
- If not None - add prefix to the REST URL path.
|
|
|
- Example: service/v1 will result in
|
|
|
- http://localhost:6333/service/v1/{qdrant-endpoint} for REST API.
|
|
|
- Default: None
|
|
|
- timeout:
|
|
|
- Timeout for REST and gRPC API requests.
|
|
|
- Default: 5.0 seconds for REST and unlimited for gRPC
|
|
|
- host:
|
|
|
- Host name of Qdrant service. If url and host are None, set to
|
|
|
- 'localhost'. Default: None
|
|
|
- path:
|
|
|
- Path in which the vectors will be stored while using local mode.
|
|
|
- Default: None
|
|
|
- collection_name:
|
|
|
- Name of the Qdrant collection to be used. If not provided,
|
|
|
- it will be created randomly. Default: None
|
|
|
- distance_func:
|
|
|
- Distance function. One of: "Cosine" / "Euclid" / "Dot".
|
|
|
- Default: "Cosine"
|
|
|
- content_payload_key:
|
|
|
- A payload key used to store the content of the document.
|
|
|
- Default: "page_content"
|
|
|
- metadata_payload_key:
|
|
|
- A payload key used to store the metadata of the document.
|
|
|
- Default: "metadata"
|
|
|
- group_payload_key:
|
|
|
- A payload key used to store the content of the document.
|
|
|
- Default: "group_id"
|
|
|
- group_id:
|
|
|
- collection group id
|
|
|
- vector_name:
|
|
|
- Name of the vector to be used internally in Qdrant.
|
|
|
- Default: None
|
|
|
- batch_size:
|
|
|
- How many vectors upload per-request.
|
|
|
- Default: 64
|
|
|
- shard_number: Number of shards in collection. Default is 1, minimum is 1.
|
|
|
- replication_factor:
|
|
|
- Replication factor for collection. Default is 1, minimum is 1.
|
|
|
- Defines how many copies of each shard will be created.
|
|
|
- Have effect only in distributed mode.
|
|
|
- write_consistency_factor:
|
|
|
- Write consistency factor for collection. Default is 1, minimum is 1.
|
|
|
- Defines how many replicas should apply the operation for us to consider
|
|
|
- it successful. Increasing this number will make the collection more
|
|
|
- resilient to inconsistencies, but will also make it fail if not enough
|
|
|
- replicas are available.
|
|
|
- Does not have any performance impact.
|
|
|
- Have effect only in distributed mode.
|
|
|
- on_disk_payload:
|
|
|
- If true - point`s payload will not be stored in memory.
|
|
|
- It will be read from the disk every time it is requested.
|
|
|
- This setting saves RAM by (slightly) increasing the response time.
|
|
|
- Note: those payload values that are involved in filtering and are
|
|
|
- indexed - remain in RAM.
|
|
|
- hnsw_config: Params for HNSW index
|
|
|
- optimizers_config: Params for optimizer
|
|
|
- wal_config: Params for Write-Ahead-Log
|
|
|
- quantization_config:
|
|
|
- Params for quantization, if None - quantization will be disabled
|
|
|
- init_from:
|
|
|
- Use data stored in another collection to initialize this collection
|
|
|
- force_recreate:
|
|
|
- Force recreating the collection
|
|
|
- **kwargs:
|
|
|
- Additional arguments passed directly into REST client initialization
|
|
|
-
|
|
|
- This is a user-friendly interface that:
|
|
|
- 1. Creates embeddings, one for each text
|
|
|
- 2. Initializes the Qdrant database as an in-memory docstore by default
|
|
|
- (and overridable to a remote docstore)
|
|
|
- 3. Adds the text embeddings to the Qdrant database
|
|
|
-
|
|
|
- This is intended to be a quick way to get started.
|
|
|
-
|
|
|
- Example:
|
|
|
- .. code-block:: python
|
|
|
-
|
|
|
- from langchain import Qdrant
|
|
|
- from langchain.embeddings import OpenAIEmbeddings
|
|
|
- embeddings = OpenAIEmbeddings()
|
|
|
- qdrant = Qdrant.from_texts(texts, embeddings, "localhost")
|
|
|
- """
|
|
|
- qdrant = cls._construct_instance(
|
|
|
- texts,
|
|
|
- embedding,
|
|
|
- metadatas,
|
|
|
- ids,
|
|
|
- location,
|
|
|
- url,
|
|
|
- port,
|
|
|
- grpc_port,
|
|
|
- prefer_grpc,
|
|
|
- https,
|
|
|
- api_key,
|
|
|
- prefix,
|
|
|
- timeout,
|
|
|
- host,
|
|
|
- path,
|
|
|
- collection_name,
|
|
|
- distance_func,
|
|
|
- content_payload_key,
|
|
|
- metadata_payload_key,
|
|
|
- group_payload_key,
|
|
|
- group_id,
|
|
|
- vector_name,
|
|
|
- shard_number,
|
|
|
- replication_factor,
|
|
|
- write_consistency_factor,
|
|
|
- on_disk_payload,
|
|
|
- hnsw_config,
|
|
|
- optimizers_config,
|
|
|
- wal_config,
|
|
|
- quantization_config,
|
|
|
- init_from,
|
|
|
- force_recreate,
|
|
|
- **kwargs,
|
|
|
- )
|
|
|
- qdrant.add_texts(texts, metadatas, ids, batch_size)
|
|
|
- return qdrant
|
|
|
-
|
|
|
- @classmethod
|
|
|
- @sync_call_fallback
|
|
|
- async def afrom_texts(
|
|
|
- cls: type[Qdrant],
|
|
|
- texts: list[str],
|
|
|
- embedding: Embeddings,
|
|
|
- metadatas: Optional[list[dict]] = None,
|
|
|
- ids: Optional[Sequence[str]] = None,
|
|
|
- location: Optional[str] = None,
|
|
|
- url: Optional[str] = None,
|
|
|
- port: Optional[int] = 6333,
|
|
|
- grpc_port: int = 6334,
|
|
|
- prefer_grpc: bool = False,
|
|
|
- https: Optional[bool] = None,
|
|
|
- api_key: Optional[str] = None,
|
|
|
- prefix: Optional[str] = None,
|
|
|
- timeout: Optional[float] = None,
|
|
|
- host: Optional[str] = None,
|
|
|
- path: Optional[str] = None,
|
|
|
- collection_name: Optional[str] = None,
|
|
|
- distance_func: str = "Cosine",
|
|
|
- content_payload_key: str = CONTENT_KEY,
|
|
|
- metadata_payload_key: str = METADATA_KEY,
|
|
|
- vector_name: Optional[str] = VECTOR_NAME,
|
|
|
- batch_size: int = 64,
|
|
|
- shard_number: Optional[int] = None,
|
|
|
- replication_factor: Optional[int] = None,
|
|
|
- write_consistency_factor: Optional[int] = None,
|
|
|
- on_disk_payload: Optional[bool] = None,
|
|
|
- hnsw_config: Optional[common_types.HnswConfigDiff] = None,
|
|
|
- optimizers_config: Optional[common_types.OptimizersConfigDiff] = None,
|
|
|
- wal_config: Optional[common_types.WalConfigDiff] = None,
|
|
|
- quantization_config: Optional[common_types.QuantizationConfig] = None,
|
|
|
- init_from: Optional[common_types.InitFrom] = None,
|
|
|
- force_recreate: bool = False,
|
|
|
- **kwargs: Any,
|
|
|
- ) -> Qdrant:
|
|
|
- """Construct Qdrant wrapper from a list of texts.
|
|
|
-
|
|
|
- Args:
|
|
|
- texts: A list of texts to be indexed in Qdrant.
|
|
|
- embedding: A subclass of `Embeddings`, responsible for text vectorization.
|
|
|
- metadatas:
|
|
|
- An optional list of metadata. If provided it has to be of the same
|
|
|
- length as a list of texts.
|
|
|
- ids:
|
|
|
- Optional list of ids to associate with the texts. Ids have to be
|
|
|
- uuid-like strings.
|
|
|
- location:
|
|
|
- If `:memory:` - use in-memory Qdrant instance.
|
|
|
- If `str` - use it as a `url` parameter.
|
|
|
- If `None` - fallback to relying on `host` and `port` parameters.
|
|
|
- url: either host or str of "Optional[scheme], host, Optional[port],
|
|
|
- Optional[prefix]". Default: `None`
|
|
|
- port: Port of the REST API interface. Default: 6333
|
|
|
- grpc_port: Port of the gRPC interface. Default: 6334
|
|
|
- prefer_grpc:
|
|
|
- If true - use gPRC interface whenever possible in custom methods.
|
|
|
- Default: False
|
|
|
- https: If true - use HTTPS(SSL) protocol. Default: None
|
|
|
- api_key: API key for authentication in Qdrant Cloud. Default: None
|
|
|
- prefix:
|
|
|
- If not None - add prefix to the REST URL path.
|
|
|
- Example: service/v1 will result in
|
|
|
- http://localhost:6333/service/v1/{qdrant-endpoint} for REST API.
|
|
|
- Default: None
|
|
|
- timeout:
|
|
|
- Timeout for REST and gRPC API requests.
|
|
|
- Default: 5.0 seconds for REST and unlimited for gRPC
|
|
|
- host:
|
|
|
- Host name of Qdrant service. If url and host are None, set to
|
|
|
- 'localhost'. Default: None
|
|
|
- path:
|
|
|
- Path in which the vectors will be stored while using local mode.
|
|
|
- Default: None
|
|
|
- collection_name:
|
|
|
- Name of the Qdrant collection to be used. If not provided,
|
|
|
- it will be created randomly. Default: None
|
|
|
- distance_func:
|
|
|
- Distance function. One of: "Cosine" / "Euclid" / "Dot".
|
|
|
- Default: "Cosine"
|
|
|
- content_payload_key:
|
|
|
- A payload key used to store the content of the document.
|
|
|
- Default: "page_content"
|
|
|
- metadata_payload_key:
|
|
|
- A payload key used to store the metadata of the document.
|
|
|
- Default: "metadata"
|
|
|
- vector_name:
|
|
|
- Name of the vector to be used internally in Qdrant.
|
|
|
- Default: None
|
|
|
- batch_size:
|
|
|
- How many vectors upload per-request.
|
|
|
- Default: 64
|
|
|
- shard_number: Number of shards in collection. Default is 1, minimum is 1.
|
|
|
- replication_factor:
|
|
|
- Replication factor for collection. Default is 1, minimum is 1.
|
|
|
- Defines how many copies of each shard will be created.
|
|
|
- Have effect only in distributed mode.
|
|
|
- write_consistency_factor:
|
|
|
- Write consistency factor for collection. Default is 1, minimum is 1.
|
|
|
- Defines how many replicas should apply the operation for us to consider
|
|
|
- it successful. Increasing this number will make the collection more
|
|
|
- resilient to inconsistencies, but will also make it fail if not enough
|
|
|
- replicas are available.
|
|
|
- Does not have any performance impact.
|
|
|
- Have effect only in distributed mode.
|
|
|
- on_disk_payload:
|
|
|
- If true - point`s payload will not be stored in memory.
|
|
|
- It will be read from the disk every time it is requested.
|
|
|
- This setting saves RAM by (slightly) increasing the response time.
|
|
|
- Note: those payload values that are involved in filtering and are
|
|
|
- indexed - remain in RAM.
|
|
|
- hnsw_config: Params for HNSW index
|
|
|
- optimizers_config: Params for optimizer
|
|
|
- wal_config: Params for Write-Ahead-Log
|
|
|
- quantization_config:
|
|
|
- Params for quantization, if None - quantization will be disabled
|
|
|
- init_from:
|
|
|
- Use data stored in another collection to initialize this collection
|
|
|
- force_recreate:
|
|
|
- Force recreating the collection
|
|
|
- **kwargs:
|
|
|
- Additional arguments passed directly into REST client initialization
|
|
|
-
|
|
|
- This is a user-friendly interface that:
|
|
|
- 1. Creates embeddings, one for each text
|
|
|
- 2. Initializes the Qdrant database as an in-memory docstore by default
|
|
|
- (and overridable to a remote docstore)
|
|
|
- 3. Adds the text embeddings to the Qdrant database
|
|
|
-
|
|
|
- This is intended to be a quick way to get started.
|
|
|
-
|
|
|
- Example:
|
|
|
- .. code-block:: python
|
|
|
-
|
|
|
- from langchain import Qdrant
|
|
|
- from langchain.embeddings import OpenAIEmbeddings
|
|
|
- embeddings = OpenAIEmbeddings()
|
|
|
- qdrant = await Qdrant.afrom_texts(texts, embeddings, "localhost")
|
|
|
- """
|
|
|
- qdrant = cls._construct_instance(
|
|
|
- texts,
|
|
|
- embedding,
|
|
|
- metadatas,
|
|
|
- ids,
|
|
|
- location,
|
|
|
- url,
|
|
|
- port,
|
|
|
- grpc_port,
|
|
|
- prefer_grpc,
|
|
|
- https,
|
|
|
- api_key,
|
|
|
- prefix,
|
|
|
- timeout,
|
|
|
- host,
|
|
|
- path,
|
|
|
- collection_name,
|
|
|
- distance_func,
|
|
|
- content_payload_key,
|
|
|
- metadata_payload_key,
|
|
|
- vector_name,
|
|
|
- shard_number,
|
|
|
- replication_factor,
|
|
|
- write_consistency_factor,
|
|
|
- on_disk_payload,
|
|
|
- hnsw_config,
|
|
|
- optimizers_config,
|
|
|
- wal_config,
|
|
|
- quantization_config,
|
|
|
- init_from,
|
|
|
- force_recreate,
|
|
|
- **kwargs,
|
|
|
- )
|
|
|
- await qdrant.aadd_texts(texts, metadatas, ids, batch_size)
|
|
|
- return qdrant
|
|
|
-
|
|
|
- @classmethod
|
|
|
- def _construct_instance(
|
|
|
- cls: type[Qdrant],
|
|
|
- texts: list[str],
|
|
|
- embedding: Embeddings,
|
|
|
- metadatas: Optional[list[dict]] = None,
|
|
|
- ids: Optional[Sequence[str]] = None,
|
|
|
- location: Optional[str] = None,
|
|
|
- url: Optional[str] = None,
|
|
|
- port: Optional[int] = 6333,
|
|
|
- grpc_port: int = 6334,
|
|
|
- prefer_grpc: bool = False,
|
|
|
- https: Optional[bool] = None,
|
|
|
- api_key: Optional[str] = None,
|
|
|
- prefix: Optional[str] = None,
|
|
|
- timeout: Optional[float] = None,
|
|
|
- host: Optional[str] = None,
|
|
|
- path: Optional[str] = None,
|
|
|
- collection_name: Optional[str] = None,
|
|
|
- distance_func: str = "Cosine",
|
|
|
- content_payload_key: str = CONTENT_KEY,
|
|
|
- metadata_payload_key: str = METADATA_KEY,
|
|
|
- group_payload_key: str = GROUP_KEY,
|
|
|
- group_id: str = None,
|
|
|
- vector_name: Optional[str] = VECTOR_NAME,
|
|
|
- shard_number: Optional[int] = None,
|
|
|
- replication_factor: Optional[int] = None,
|
|
|
- write_consistency_factor: Optional[int] = None,
|
|
|
- on_disk_payload: Optional[bool] = None,
|
|
|
- hnsw_config: Optional[common_types.HnswConfigDiff] = None,
|
|
|
- optimizers_config: Optional[common_types.OptimizersConfigDiff] = None,
|
|
|
- wal_config: Optional[common_types.WalConfigDiff] = None,
|
|
|
- quantization_config: Optional[common_types.QuantizationConfig] = None,
|
|
|
- init_from: Optional[common_types.InitFrom] = None,
|
|
|
- force_recreate: bool = False,
|
|
|
- **kwargs: Any,
|
|
|
- ) -> Qdrant:
|
|
|
- try:
|
|
|
- import qdrant_client
|
|
|
- except ImportError:
|
|
|
- raise ValueError(
|
|
|
- "Could not import qdrant-client python package. "
|
|
|
- "Please install it with `pip install qdrant-client`."
|
|
|
- )
|
|
|
- from qdrant_client.http import models as rest
|
|
|
-
|
|
|
- # Just do a single quick embedding to get vector size
|
|
|
- partial_embeddings = embedding.embed_documents(texts[:1])
|
|
|
- vector_size = len(partial_embeddings[0])
|
|
|
- collection_name = collection_name or uuid.uuid4().hex
|
|
|
- distance_func = distance_func.upper()
|
|
|
- is_new_collection = False
|
|
|
- client = qdrant_client.QdrantClient(
|
|
|
- location=location,
|
|
|
- url=url,
|
|
|
- port=port,
|
|
|
- grpc_port=grpc_port,
|
|
|
- prefer_grpc=prefer_grpc,
|
|
|
- https=https,
|
|
|
- api_key=api_key,
|
|
|
- prefix=prefix,
|
|
|
- timeout=timeout,
|
|
|
- host=host,
|
|
|
- path=path,
|
|
|
- **kwargs,
|
|
|
- )
|
|
|
- all_collection_name = []
|
|
|
- collections_response = client.get_collections()
|
|
|
- collection_list = collections_response.collections
|
|
|
- for collection in collection_list:
|
|
|
- all_collection_name.append(collection.name)
|
|
|
- if collection_name not in all_collection_name:
|
|
|
- vectors_config = rest.VectorParams(
|
|
|
- size=vector_size,
|
|
|
- distance=rest.Distance[distance_func],
|
|
|
- )
|
|
|
-
|
|
|
- # If vector name was provided, we're going to use the named vectors feature
|
|
|
- # with just a single vector.
|
|
|
- if vector_name is not None:
|
|
|
- vectors_config = { # type: ignore[assignment]
|
|
|
- vector_name: vectors_config,
|
|
|
- }
|
|
|
-
|
|
|
- client.recreate_collection(
|
|
|
- collection_name=collection_name,
|
|
|
- vectors_config=vectors_config,
|
|
|
- shard_number=shard_number,
|
|
|
- replication_factor=replication_factor,
|
|
|
- write_consistency_factor=write_consistency_factor,
|
|
|
- on_disk_payload=on_disk_payload,
|
|
|
- hnsw_config=hnsw_config,
|
|
|
- optimizers_config=optimizers_config,
|
|
|
- wal_config=wal_config,
|
|
|
- quantization_config=quantization_config,
|
|
|
- init_from=init_from,
|
|
|
- timeout=int(timeout), # type: ignore[arg-type]
|
|
|
- )
|
|
|
- is_new_collection = True
|
|
|
- if force_recreate:
|
|
|
- raise ValueError
|
|
|
-
|
|
|
- # Get the vector configuration of the existing collection and vector, if it
|
|
|
- # was specified. If the old configuration does not match the current one,
|
|
|
- # an exception is being thrown.
|
|
|
- collection_info = client.get_collection(collection_name=collection_name)
|
|
|
- current_vector_config = collection_info.config.params.vectors
|
|
|
- if isinstance(current_vector_config, dict) and vector_name is not None:
|
|
|
- if vector_name not in current_vector_config:
|
|
|
- raise QdrantException(
|
|
|
- f"Existing Qdrant collection {collection_name} does not "
|
|
|
- f"contain vector named {vector_name}. Did you mean one of the "
|
|
|
- f"existing vectors: {', '.join(current_vector_config.keys())}? "
|
|
|
- f"If you want to recreate the collection, set `force_recreate` "
|
|
|
- f"parameter to `True`."
|
|
|
- )
|
|
|
- current_vector_config = current_vector_config.get(
|
|
|
- vector_name
|
|
|
- ) # type: ignore[assignment]
|
|
|
- elif isinstance(current_vector_config, dict) and vector_name is None:
|
|
|
- raise QdrantException(
|
|
|
- f"Existing Qdrant collection {collection_name} uses named vectors. "
|
|
|
- f"If you want to reuse it, please set `vector_name` to any of the "
|
|
|
- f"existing named vectors: "
|
|
|
- f"{', '.join(current_vector_config.keys())}." # noqa
|
|
|
- f"If you want to recreate the collection, set `force_recreate` "
|
|
|
- f"parameter to `True`."
|
|
|
- )
|
|
|
- elif (
|
|
|
- not isinstance(current_vector_config, dict) and vector_name is not None
|
|
|
- ):
|
|
|
- raise QdrantException(
|
|
|
- f"Existing Qdrant collection {collection_name} doesn't use named "
|
|
|
- f"vectors. If you want to reuse it, please set `vector_name` to "
|
|
|
- f"`None`. If you want to recreate the collection, set "
|
|
|
- f"`force_recreate` parameter to `True`."
|
|
|
- )
|
|
|
-
|
|
|
- # Check if the vector configuration has the same dimensionality.
|
|
|
- if current_vector_config.size != vector_size: # type: ignore[union-attr]
|
|
|
- raise QdrantException(
|
|
|
- f"Existing Qdrant collection is configured for vectors with "
|
|
|
- f"{current_vector_config.size} " # type: ignore[union-attr]
|
|
|
- f"dimensions. Selected embeddings are {vector_size}-dimensional. "
|
|
|
- f"If you want to recreate the collection, set `force_recreate` "
|
|
|
- f"parameter to `True`."
|
|
|
- )
|
|
|
-
|
|
|
- current_distance_func = (
|
|
|
- current_vector_config.distance.name.upper() # type: ignore[union-attr]
|
|
|
- )
|
|
|
- if current_distance_func != distance_func:
|
|
|
- raise QdrantException(
|
|
|
- f"Existing Qdrant collection is configured for "
|
|
|
- f"{current_vector_config.distance} " # type: ignore[union-attr]
|
|
|
- f"similarity. Please set `distance_func` parameter to "
|
|
|
- f"`{distance_func}` if you want to reuse it. If you want to "
|
|
|
- f"recreate the collection, set `force_recreate` parameter to "
|
|
|
- f"`True`."
|
|
|
- )
|
|
|
- qdrant = cls(
|
|
|
- client=client,
|
|
|
- collection_name=collection_name,
|
|
|
- embeddings=embedding,
|
|
|
- content_payload_key=content_payload_key,
|
|
|
- metadata_payload_key=metadata_payload_key,
|
|
|
- distance_strategy=distance_func,
|
|
|
- vector_name=vector_name,
|
|
|
- group_id=group_id,
|
|
|
- group_payload_key=group_payload_key,
|
|
|
- is_new_collection=is_new_collection
|
|
|
- )
|
|
|
- return qdrant
|
|
|
-
|
|
|
- def _select_relevance_score_fn(self) -> Callable[[float], float]:
|
|
|
- """
|
|
|
- The 'correct' relevance function
|
|
|
- may differ depending on a few things, including:
|
|
|
- - the distance / similarity metric used by the VectorStore
|
|
|
- - the scale of your embeddings (OpenAI's are unit normed. Many others are not!)
|
|
|
- - embedding dimensionality
|
|
|
- - etc.
|
|
|
- """
|
|
|
-
|
|
|
- if self.distance_strategy == "COSINE":
|
|
|
- return self._cosine_relevance_score_fn
|
|
|
- elif self.distance_strategy == "DOT":
|
|
|
- return self._max_inner_product_relevance_score_fn
|
|
|
- elif self.distance_strategy == "EUCLID":
|
|
|
- return self._euclidean_relevance_score_fn
|
|
|
- else:
|
|
|
- raise ValueError(
|
|
|
- "Unknown distance strategy, must be cosine, "
|
|
|
- "max_inner_product, or euclidean"
|
|
|
- )
|
|
|
-
|
|
|
- def _similarity_search_with_relevance_scores(
|
|
|
- self,
|
|
|
- query: str,
|
|
|
- k: int = 4,
|
|
|
- **kwargs: Any,
|
|
|
- ) -> list[tuple[Document, float]]:
|
|
|
- """Return docs and relevance scores in the range [0, 1].
|
|
|
-
|
|
|
- 0 is dissimilar, 1 is most similar.
|
|
|
-
|
|
|
- Args:
|
|
|
- query: input text
|
|
|
- k: Number of Documents to return. Defaults to 4.
|
|
|
- **kwargs: kwargs to be passed to similarity search. Should include:
|
|
|
- score_threshold: Optional, a floating point value between 0 to 1 to
|
|
|
- filter the resulting set of retrieved docs
|
|
|
-
|
|
|
- Returns:
|
|
|
- List of Tuples of (doc, similarity_score)
|
|
|
- """
|
|
|
- return self.similarity_search_with_score(query, k, **kwargs)
|
|
|
-
|
|
|
- @classmethod
|
|
|
- def _build_payloads(
|
|
|
- cls,
|
|
|
- texts: Iterable[str],
|
|
|
- metadatas: Optional[list[dict]],
|
|
|
- content_payload_key: str,
|
|
|
- metadata_payload_key: str,
|
|
|
- group_id: str,
|
|
|
- group_payload_key: str
|
|
|
- ) -> list[dict]:
|
|
|
- payloads = []
|
|
|
- for i, text in enumerate(texts):
|
|
|
- if text is None:
|
|
|
- raise ValueError(
|
|
|
- "At least one of the texts is None. Please remove it before "
|
|
|
- "calling .from_texts or .add_texts on Qdrant instance."
|
|
|
- )
|
|
|
- metadata = metadatas[i] if metadatas is not None else None
|
|
|
- payloads.append(
|
|
|
- {
|
|
|
- content_payload_key: text,
|
|
|
- metadata_payload_key: metadata,
|
|
|
- group_payload_key: group_id
|
|
|
- }
|
|
|
- )
|
|
|
-
|
|
|
- return payloads
|
|
|
-
|
|
|
- @classmethod
|
|
|
- def _document_from_scored_point(
|
|
|
- cls,
|
|
|
- scored_point: Any,
|
|
|
- content_payload_key: str,
|
|
|
- metadata_payload_key: str,
|
|
|
- ) -> Document:
|
|
|
- return Document(
|
|
|
- page_content=scored_point.payload.get(content_payload_key),
|
|
|
- metadata=scored_point.payload.get(metadata_payload_key) or {},
|
|
|
- )
|
|
|
-
|
|
|
- @classmethod
|
|
|
- def _document_from_scored_point_grpc(
|
|
|
- cls,
|
|
|
- scored_point: Any,
|
|
|
- content_payload_key: str,
|
|
|
- metadata_payload_key: str,
|
|
|
- ) -> Document:
|
|
|
- from qdrant_client.conversions.conversion import grpc_to_payload
|
|
|
-
|
|
|
- payload = grpc_to_payload(scored_point.payload)
|
|
|
- return Document(
|
|
|
- page_content=payload[content_payload_key],
|
|
|
- metadata=payload.get(metadata_payload_key) or {},
|
|
|
- )
|
|
|
-
|
|
|
- def _build_condition(self, key: str, value: Any) -> list[rest.FieldCondition]:
|
|
|
- from qdrant_client.http import models as rest
|
|
|
-
|
|
|
- out = []
|
|
|
-
|
|
|
- if isinstance(value, dict):
|
|
|
- for _key, value in value.items():
|
|
|
- out.extend(self._build_condition(f"{key}.{_key}", value))
|
|
|
- elif isinstance(value, list):
|
|
|
- for _value in value:
|
|
|
- if isinstance(_value, dict):
|
|
|
- out.extend(self._build_condition(f"{key}[]", _value))
|
|
|
- else:
|
|
|
- out.extend(self._build_condition(f"{key}", _value))
|
|
|
- else:
|
|
|
- out.append(
|
|
|
- rest.FieldCondition(
|
|
|
- key=key,
|
|
|
- match=rest.MatchValue(value=value),
|
|
|
- )
|
|
|
- )
|
|
|
-
|
|
|
- return out
|
|
|
-
|
|
|
- def _qdrant_filter_from_dict(
|
|
|
- self, filter: Optional[DictFilter]
|
|
|
- ) -> Optional[rest.Filter]:
|
|
|
- from qdrant_client.http import models as rest
|
|
|
-
|
|
|
- if not filter:
|
|
|
- return None
|
|
|
-
|
|
|
- return rest.Filter(
|
|
|
- must=[
|
|
|
- condition
|
|
|
- for key, value in filter.items()
|
|
|
- for condition in self._build_condition(key, value)
|
|
|
- ]
|
|
|
- )
|
|
|
-
|
|
|
- def _embed_query(self, query: str) -> list[float]:
|
|
|
- """Embed query text.
|
|
|
-
|
|
|
- Used to provide backward compatibility with `embedding_function` argument.
|
|
|
-
|
|
|
- Args:
|
|
|
- query: Query text.
|
|
|
-
|
|
|
- Returns:
|
|
|
- List of floats representing the query embedding.
|
|
|
- """
|
|
|
- if self.embeddings is not None:
|
|
|
- embedding = self.embeddings.embed_query(query)
|
|
|
- else:
|
|
|
- if self._embeddings_function is not None:
|
|
|
- embedding = self._embeddings_function(query)
|
|
|
- else:
|
|
|
- raise ValueError("Neither of embeddings or embedding_function is set")
|
|
|
- return embedding.tolist() if hasattr(embedding, "tolist") else embedding
|
|
|
-
|
|
|
- def _embed_texts(self, texts: Iterable[str]) -> list[list[float]]:
|
|
|
- """Embed search texts.
|
|
|
-
|
|
|
- Used to provide backward compatibility with `embedding_function` argument.
|
|
|
-
|
|
|
- Args:
|
|
|
- texts: Iterable of texts to embed.
|
|
|
-
|
|
|
- Returns:
|
|
|
- List of floats representing the texts embedding.
|
|
|
- """
|
|
|
- if self.embeddings is not None:
|
|
|
- embeddings = self.embeddings.embed_documents(list(texts))
|
|
|
- if hasattr(embeddings, "tolist"):
|
|
|
- embeddings = embeddings.tolist()
|
|
|
- elif self._embeddings_function is not None:
|
|
|
- embeddings = []
|
|
|
- for text in texts:
|
|
|
- embedding = self._embeddings_function(text)
|
|
|
- if hasattr(embeddings, "tolist"):
|
|
|
- embedding = embedding.tolist()
|
|
|
- embeddings.append(embedding)
|
|
|
- else:
|
|
|
- raise ValueError("Neither of embeddings or embedding_function is set")
|
|
|
-
|
|
|
- return embeddings
|
|
|
-
|
|
|
- def _generate_rest_batches(
|
|
|
- self,
|
|
|
- texts: Iterable[str],
|
|
|
- metadatas: Optional[list[dict]] = None,
|
|
|
- ids: Optional[Sequence[str]] = None,
|
|
|
- batch_size: int = 64,
|
|
|
- group_id: Optional[str] = None,
|
|
|
- ) -> Generator[tuple[list[str], list[rest.PointStruct]], None, None]:
|
|
|
- from qdrant_client.http import models as rest
|
|
|
-
|
|
|
- texts_iterator = iter(texts)
|
|
|
- metadatas_iterator = iter(metadatas or [])
|
|
|
- ids_iterator = iter(ids or [uuid.uuid4().hex for _ in iter(texts)])
|
|
|
- while batch_texts := list(islice(texts_iterator, batch_size)):
|
|
|
- # Take the corresponding metadata and id for each text in a batch
|
|
|
- batch_metadatas = list(islice(metadatas_iterator, batch_size)) or None
|
|
|
- batch_ids = list(islice(ids_iterator, batch_size))
|
|
|
-
|
|
|
- # Generate the embeddings for all the texts in a batch
|
|
|
- batch_embeddings = self._embed_texts(batch_texts)
|
|
|
-
|
|
|
- points = [
|
|
|
- rest.PointStruct(
|
|
|
- id=point_id,
|
|
|
- vector=vector
|
|
|
- if self.vector_name is None
|
|
|
- else {self.vector_name: vector},
|
|
|
- payload=payload,
|
|
|
- )
|
|
|
- for point_id, vector, payload in zip(
|
|
|
- batch_ids,
|
|
|
- batch_embeddings,
|
|
|
- self._build_payloads(
|
|
|
- batch_texts,
|
|
|
- batch_metadatas,
|
|
|
- self.content_payload_key,
|
|
|
- self.metadata_payload_key,
|
|
|
- self.group_id,
|
|
|
- self.group_payload_key
|
|
|
- ),
|
|
|
- )
|
|
|
- ]
|
|
|
-
|
|
|
- yield batch_ids, points
|